Skip to main content

Environmental Impacts of Nodule, Crust and Sulphide Mining: An Overview

  • Chapter
  • First Online:
Environmental Issues of Deep-Sea Mining

Abstract

The new industry of deep-sea mining (DSM) potentially offers abundant supplies of several metals from the deep ocean, but the ores will need to be recovered from pristine environments in which the ecosystems are often poorly known. Information that is available for some of these environments suggests that organisms may struggle to recover from the impacts of DSM, whilst in other areas the impacts may be somewhat less.

Deep-sea mining is focussed on three distinct resources – manganese nodules (also known as polymetallic nodules), cobalt crusts and seafloor massive sulphides (SMS) (sometimes called polymetallic sulphides). These occur in different seafloor settings, each hosting very different ecosystems and each with its own set of environmental issues.

Manganese nodules occur in the deep basins of the ocean where lack of sediment supply results in very slow sediment accumulation – rates that can be as low as 1 mm per thousand years – thus allowing nodules to form from slow precipitation of metals. Interest in mining manganese nodules is focussed mainly on the Clarion Clipperton Zone in the eastern equatorial Pacific and Central Indian Basin in the Indian Ocean. Here the seabed faunas are sparsely distributed but are very varied in composition. Many different species live in the upper few centimetres of the sediment or attached to the nodules. The mining process will disrupt this surface sediment layer and remove the nodules. Experiments have shown that species are very slow to return to the disrupted areas. Combined with the large areas that will need to be mined for manganese nodules, this gives rise to potentially a high environmental and ecological impact.

Cobalt crusts occur as layers up to 26 cm thick coating the rocky tops and upper flanks of seamounts, with the most promising deposits occurring between 800 and 2500 m water depth. The absence of sedimentation due to currents in these areas allows the slow growth of the crust via the precipitation of minerals from seawater. Seamount faunas are not well studied but they include a large number of species, many of which are slow-growing, long-lived and slow to reproduce. This makes it difficult for the ecosystem to recover from disruption. Large areas will need to be mined because the ore occurs in a very thin layer and whole seamounts may be affected.

The third resource – seafloor massive sulphides – differs from the previous two, being formed from precipitation of metals from hydrothermal fluids at oceanic plate boundaries. This process creates three-dimensional ore bodies extending metres into the seabed which are similar to some ore bodies that occur on land. Ecosystems comprising specialist organisms that can tolerate and make use of the harsh biochemical conditions are often found at active hydrothermal vents. These vent sites are probably too hot to ever be mined, so ore bodies are being sought some distance away from the active ridge axis in areas where venting is weaker or has stopped. The species occurring ‘off axis’ are more akin to those from the surrounding rocky slopes and possibly on the continental slopes in the same ocean basin. The species may occur over wide areas, and the impact of localised mining may be relatively small.

In all types of deep-sea mining, the generation of plumes of sediment-laden water, both by the mining process and the transport of ores to a support ship, will have an impact on benthic and mid-water ecosystems away from the mining site. If uncontrolled, such impacts could be comparable to or of greater scale to impacts in the mined areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batker, D., & Schmidt, R. (2015). Environmental and social benchmarking analysis of the Nautilus Minerals Inc. Solwara 1 Project. Nautilus Document Reference SL01-NMN-XEE-RPT-0180-001. http://www.nautilusminerals.com/irm/content/pdf/eartheconomics-reports/earth-economics-may-2015.pdf.

  • Billett, D.S.M., Hansen, B., & Huggett, Q.J. (1985). Pelagic Holothurioidea (Echinodermata) of the northeast Atlantic. In: Keegan, B.F. & B.D.S. O’Connor (Ed.), Echinodermata: Proceedings of the 5th International Echinoderms Conference, Galway, 399–411.

    Google Scholar 

  • Boetius, A., & Haeckel, M. (2018). Mind the seafloor. Science, 359, 34–36.

    Article  Google Scholar 

  • Boschen, R. E., Rowden, A. A., Clark, M. R., & Gardner, J. P. A. (2013). Mining of deepsea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean and Coastal Management, 84, 54–67. https://doi.org/10.1016/j.ocecoaman.2013.07.005.

    Article  Google Scholar 

  • Boschen, R. E., et al. (2015). Megabenthic community structure on three New Zealand seamounts: Implications for seafloor massive sulfide mining. Marine Ecology Progress Series, 523, 1–14.

    Article  Google Scholar 

  • Brown, A., & Hauton, C. (2018). Ecotoxicological responses to chalcopyrite exposure in a proxy for deep-sea hydrothermal vent shrimp: Implications for seafloor massive sulphide mining. Chemistry and Ecology, 34(4), 391–396.

    Article  Google Scholar 

  • Brown, A., Thatje, S., & Hauton, C. (2017). The effects of temperature and hydrostatic pressure on metal toxicity: Insights into toxicity in the deep sea. Environmental Science & Technology, 51, 10222–10231.

    Article  Google Scholar 

  • Carreiro-Silva, M., Andrews, A. H., Braha-Henriques, A., de Matos, A., Porteiro, F. M., & Santos, R. S. (2013). Variability in growth rates of long-lived black coral Leiopathes sp. from the Azores. Marine Ecology Progress Series, 473, 189–199.

    Article  Google Scholar 

  • Chown, S. L. (2012). Antarctic marine biodiversity and deep-sea hydrothermal vents. PLoS Biology, 10(1), e1001232. https://doi.org/10.1371/journal.pbio.1001232.

    Article  Google Scholar 

  • Chung J. S. (2009) Deep-ocean mining technology III: Developments. Proceedings of The Eighth (2009) ISOPE Ocean Mining Symposium September 20±24, Chennai.

    Google Scholar 

  • Clark, M., & Smith S. (2013) Environmental management considerations. In E. Baker, Y. Beaudoin (Eds.), (2013) Deep sea minerals: Cobalt-rich ferromanganese crusts, a physical, biological, environmental and technical review. Vol. 1C (pp. 23–40). Secretariat of the Pacific Community.

    Google Scholar 

  • Clark, M. R., Rowden, A. A., Schlacher, T., Williams, A., Consalvey, M., Stocks, K. I., Rogers, A. D., O’Hara, T. D., White, M., Shank, T. M., & Hall-Spencer, J. (2010). The ecology of seamounts: Structure, function, and human impacts. Annual Review of Marine Science, 2, 253–278.

    Article  Google Scholar 

  • Clark, M.R., Kelley, C., Baco, A., & Rowden, A. (2011). Fauna of cobalt-rich ferromanganese crust seamounts. International Seabed Authority Tech. Study No. 8. 83 pp.

    Google Scholar 

  • Copley, J. T., Marsh, L., Glover, A. G., Hühnerbach, V., Nye, V. E., Reid, W., Sweeting, C., Wigham, B. D., & Wiklund, H. (2016). Ecology and biogeography of megafauna and macrofauna at the first known deep-sea hydrothermal vents on the ultraslow-spreading Southwest Indian Ridge. Scientific Reports, 6, 39158. https://doi.org/10.1038/srep39158.

    Article  Google Scholar 

  • Dunn, D. C., Van Dover, C. L., Etter, R. J., Smith, C. R., Levin, L. A., Morato, T., Colaço, A., Dale, A. C., Gebruk, A. V., Gjerde, K. M., Halpin, P. N., Howell, K. L., Johnson, D., Perez, J. A. A., Ribeiro, M. C., Stuckas, H., Weaver, P. P. E., & the SEMPIA Workshop Participants. (2018). A strategy for the conservation of biodiversity on mid-ocean ridges from deep-sea mining. Science Advances, 4(7), EAAR4313.

    Article  Google Scholar 

  • Ellis, J. I., Clark, M. R., Rouse, H. L., & Lamarche, G. (2017). Environmental management frameworks for offshore mining: The New Zealand approach. Marine Policy, 84(Supplement C), 178–192. https://doi.org/10.1016/j.marpol.2017.07.004.

    Article  Google Scholar 

  • Erickson, K. L., Macko, S. A., & Van Dover, C. L. (2009). Evidence for a chemoautotrophically-based food web at inactive hydrothermal vents (Manus Basin). Deep-Sea Research Part II, 56, 1577–1585.

    Article  Google Scholar 

  • Fallon, E. K., Niehorster, E., Brooker, R. A., & Scott, T. B. (2018). Experimental leaching of massive sulphide from TAG active hydrothermal mound and implications for seafloor mining. Marine Pollution Bulletin, 126, 501–515.

    Article  Google Scholar 

  • Fisher, C. R., Rowden, A. A., Clark, M. R., & Desbruyères, D. (2013). Biology associated with sea-floor massive sulphide deposits. In E. Baker, Y. Beaudoin (Eds.), (2013) Deep sea minerals: Sea-floor massive sulphides, a physical, biological, environmental and technical review. Vol. 1A (pp. 19–26). Secretariat of the Pacific Community.

    Google Scholar 

  • Fuchida, S., Yokoyama, A., Fukuchi, R., Ishibashi, J., Kawagucci, S., Kawachi, M., & andKoshikawa, H. (2017). Leaching of metals and metalloids from hydrothermal ore particulates and their effects on marine phytoplankton. ACS Omega, 2(7), 3175–3182. https://doi.org/10.1021/acsomega.7b00081.

    Article  Google Scholar 

  • Fukushima, T. (2007). Amounts of megabenthic organisms in areas of manganese nodules, cobalt-rich crusts and polymetallic sulphides occurrences. Proceedings of the International Seabed Authority’s (ISA) Workshop, September 2004: Polymetallic Sulphides and Cobalt-Rich Ferromanganese Crust Deposits: Establishment of Environmental Baselines and an Associated Monitoring Programme During Exploration (ed. by ISA), pp. 356–368. International Seabed Authority, Kingston, Jamaica. Available at: http://www.isa.org.jm/en/documents/publications.

  • German, C. R., Petersen, S., & Hannington, M. D. (2016). Hydrothermal exploration of mid ocean ridges: Where might the largest sulfide deposits be forming? Chemical Geology, 420114–420126. https://doi.org/10.1016/j.chemgeo.2015.11.006.

  • Glover, A., Dahlgren, T., Taboada, S., Paterson, G., Wiklund, H., Waeschenbach, A., Cobley, A., Martínez, P., Kaiser, S., Schnurr, S., Khodami, S., Raschka, U., Kersken, D., Stuckas, H., Menot, L., Bonifacio, P., Vanreusel, A., Macheriotou, L., Cunha, M., Hilário, A., Rodrigues, C., Colaço, A., Ribeiro, P., Błażewicz, M., Gooday, A., Jones, D., Billett, D., Goineau, A., Amon, D., Smith, C., Patel, T., McQuaid, K., Spickermann, R., & andBrager, S. (2016a). The London workshop on the biogeography and connectivity of the Clarion-Clipperton Zone. Research Ideas and Outcomes, 2, e10528. https://doi.org/10.3897/rio.2.e10528.

    Article  Google Scholar 

  • Glover, A. G., Dahlgren, T. G., Wiklund, H., Mohrbeck, I., & Smith, C. R. (2016b). An end-to-end DNA taxonomy methodology for biodiversity survey in the central Pacific abyssal plain. Journal of Marine Science and Engineering, 4. https://doi.org/10.3390/jmse4010002.

  • Gollner, S., Kaiser, S., Menzel, L., Jones, D. O. B., Brown, A., Mestre, N. C., van Oevelen, D., Menot, L., Colaço, A., Canals, M., Cuvelier, D., Durden, J. M., Gebruk, A., Egho, G. A., Haeckel, M., Marcon, Y., Mevenkamp, L., Morato, T., Pham, C. K., Purser, A., Sanchez-Vidal, A., Vanreusel, A., Vink, A., & Martinez Arbizu, P. (2017). Resilience of benthic deep-sea fauna to mining activities. Marine Environmental Research, 129(Supplement C), 76–101.

    Article  Google Scholar 

  • Gwyther, D. (2008). Environmental impact statement: Nautilus minerals Niugini Limited, Solwara 1 Project, Vol. A. Coffey Natural Systems, Queensland, Australia. 226 pp. Available at http://www.cares.nautilusminerals.com/assets/documents/main%20document%20text.pdf. Accessed 27th Nov 2017.

  • Hannington, M., Jamieson, J., Monecke, T., Petersen, S., & Beaulieu, S. (2011). The abundance of seafloor massive sulfide deposits. Geology, 39, 1155e1158.

    Article  Google Scholar 

  • Hauton, C., Brown, A., Thatje, S., Mestre, N. C., Bebianno, M. J., Martins, I., Bettencourt, R., Canals, M., Sanchez-Vidal, A., Shillito, B., Ravaux, J., Zbinden, M., Duperron, S., Mevenkamp, L., Vanreusel, A., Gambi, C., Dell’Anno, A., Danovaro, R., Gunn, V., & Weaver, P. (2017). Identifying toxic impacts of metals potentially released during Deep-Sea mining – A synthesis of the challenges to quantifying risk. Frontiers in Marine Science, 4, 368. https://doi.org/10.3389/fmars.2017.00368.

    Article  Google Scholar 

  • He, G., Ma, W., Song, C., Yang, S., Zhu, B., Yao, H., Jiang, X., & Cheng, Y. (2011). Distribution characteristics of seamount cobalt-rich ferromanganese crusts and the determination of the size of areas for exploration and exploitation. ActaOceanologicaSinica, 30(3), 63–75.

    Google Scholar 

  • Hein, J. R. (2002). Cobalt-rich ferromanganese crusts: Global distribution, composition, origin and research activities. International seabed authority, Technical Study, 2, 36–89.

    Google Scholar 

  • Hein, J. R., & Koschinsky, A. (2014). Deep-ocean ferromanganese crusts and nodules, treatise on geochemistry: Elsevier (pp. 273–291), URL: http://linkinghub.elsevier.com/retrieve/pii/B9780080959757011116.

  • Hein, J. R., Conrad, T. A., & Dunham, R. E. (2009). Seamount characteristics and mine-site model applied to exploration and mining lease block selection for cobalt-rich ferromanganese crusts. Marine Georesources and Geotechnology, 27, 160–176.

    Article  Google Scholar 

  • Hölz, S., Jegen, M., Petersen, S., & Hannington, M. (2015). How to find buried and inactive seafloor massive sulfides using transient electromagnetics. Nearshore underwater mining: Critical commodities for the future 44th underwater mining conference 2015 Tampa Bay, FL.

    Google Scholar 

  • International Seabed Authority (2018). Draft regulations on exploitation of mineral resources in the Area. ISBA/24/LTC/WP.1/Rev.1, 113pp

    Google Scholar 

  • International Seabed Authority (2019) Status of contracts for exploration and related matters, including information on the periodic review of the implementation of approved plans of work for exploration. ISBA/25/C/9 International Seabed Authority, Kingston, Jamaica, pp. 1–5

    Google Scholar 

  • Jaeckel, A. (2016). Deep seabed mining and adaptive management: The procedural challenges for the International Seabed Authority. Marine Policy, 70, 205–211. https://doi.org/10.1016/j.marpol.2016.03.008.

    Article  Google Scholar 

  • Janssen, A., Kaiser, S., Meißner, K., Brenke, N., Menot, L., & Martínez Arbizu, P. (2015). A reverse taxonomic approach to assess macrofaunaldistribution patterns in abyssal Pacific polymetallicnodule fields. PLoS One, 10(2), e0117790. https://doi.org/10.1371/journal.pone.0117790.

    Article  Google Scholar 

  • Jones, D. O. B., & Weaver, P. P. E. (2017) Overarching issues around regional governance of deep seabed mining. In: Towards an ISA Environmental Management Strategy for the Area: Report of an International Workshop convened by the German Environment Agency (UBA), the German Federal Institute for Geosciences and Natural Resources (BGR) and the Secretariat of the International Seabed Authority (ISA) in Berlin, Germany, 20–24 March 2017. Pages 74–77. (ISA Technical Study; 17).

    Google Scholar 

  • Jones, D. O. B., Kaiser, S., Sweetman, A. K., Smith, C. R., Menot, L., Vink, A., et al. (2017). Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. PLoS One, 12(2), e0171750.

    Google Scholar 

  • Knight, R. D., Roberts, S., & Cooper, M. J. (2018). Investigating monomineralic and polymineralic reactions during the oxidation of sulphide minerals in seawater: Implications for mining seafloor massive sulphide deposits. Applied Geochemistry, 90(August 2017), 63–74.

    Article  Google Scholar 

  • Levin, L. A., Baco, A. R., Bowden, D. A., Colaco, A., Cordes, E. E., Cunha, M. R., Demopoulos, A. W. J., Gobin, J., Grupe, B. M., Le, J., Metaxas, A., Netburn, A. N., Rouse, G. W., Thurber, A. R., Tunnicliffe, V., Van Dover, C. L., Vanreusel, A., & Watling, L. (2016). Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Frontiers in Marine Science, 3, 72. https://doi.org/10.3389/fmars.2016.00072.

    Article  Google Scholar 

  • Lipton, I. (2012). Mineral resource estimate: Solwara Project, Bismarck Sea, PNG. Technical Report compiled under NI43–101. Golder Associates, for Nautilus Minerals Nuigini. 218 pp.

    Google Scholar 

  • Maribus. (2014). World ocean review 3. Marine resources – Opportunities and risks. 163 pp maribusgGmbH, Pickhuben 2, 20457 Hamburg http://worldoceanreview.com/wp-content/downloads/wor3/WOR3_english.pdf.

  • Maribus. (2017). World ocean review 5. Coasts – A vital habitat under pressure. 207 pp. maribusgGmbH, Pickhuben 2, 20457 Hamburg http://worldoceanreview.com/wp-content/downloads/wor5/WOR5_en.pdf.

  • Marquenie, J. M., Wagner, J., Stephenson, M. T., & Lucas, L. (2014). Green lighting the way: Managing impacts from offshore platform lighting on migratory birds. Society of Petroleum Engineers. https://doi.org/10.2118/168350-MS.

  • McCormack, G. (2016). Cook Islands seabed minerals – A precautionary approach to mining. Rarotonga: Cook Islands Natural Heritage Trust. 34pp.

    Google Scholar 

  • Mero, J. L. (1965). The mineral resources of the sea (Oceanography series). New York: Elsevier. 1. 312 pp.

    Google Scholar 

  • MIDAS. (2016). Managing impacts of deep-sea resource exploitation: Research highlights. www.eu-midas.net.

  • Miljutin, D. M., Miljutina, M. A., Martinez Arbizu, P., & Galéron, J. (2011). Deep-sea nematode assemblage has not recovered 26 years after experimental mining for polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern Pacific). Deep-Sea Research Part I, 58, 885–897.

    Article  Google Scholar 

  • Miller, K. A., Thompson, K. F., Johnston, P., & Santillo, D. (2018). An overview of seabed mining including the current state of development, environmental impacts, and knowledge gaps. Frontiers in Marine Science, 4, 418.

    Article  Google Scholar 

  • Mullineaux, L. S. (1987). Organisms living on manganese nodules and crusts: Distribution and abundance at three North Pacific sites. Deep-Sea Research, 34, 165–184.

    Article  Google Scholar 

  • Murray, J. (1876). Preliminary report on specimens of the sea bottom obtained in soundings, dredgings, and trawlings of H.M.S. Challenger in the years 1873–1875 between England and Valparaiso. Proceedings of the Royal Society, 24, 471–547.

    Article  Google Scholar 

  • Murray, J., & Renard, A.F. (1891). Report on deep sea deposits, Report on the Scientific Results of the Voyage of H.M.S. Challenger, Deep Sea Deposits, 525 pp.

    Google Scholar 

  • Nalesso, R. C., Duarte, L. F. L., Rierozzi, I., & Enumo, E. F. (1995). Tube epifauna of the polychaete Phyllo chaetopterus socialis Claparede. Estuarine, Coastal and Shelf Science, 41, 91–100.

    Article  Google Scholar 

  • Petersen, S., Krätschell, A., Augustin, N., Jamieson, J., Hein, J. R., & Hannington, M. D. (2016). News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources. Marine Policy, 70, 175–187.

    Article  Google Scholar 

  • Petersen, S., Hannington, M., & Kratschell A. (2017). Technology developments in the exploration and evaluation of deep-sea mineral resources. Responsabilité & Environnement – January 2017 – N°85, p 14–18.

    Google Scholar 

  • Popper, A. R., Fewtrell, J., Smith, M. E., & McCauley, R. D. (2003). Anthropogenic sound: Effects on the behaviour and physiology of fishes. Marine Technology Society Journal, 37(4), 35–40.

    Article  Google Scholar 

  • Priede, I. G., Billett, D. S. M., Brierley, A. S., Hoelzel, A. R., Inall, M., Miller, P. I., Cousins, N. J., Shields, M. A., & Fujii, T. (2013). The ecosystem of the Mid-Atlantic Ridge at the sub-polar front and Charlie–Gibbs Fracture Zone; ECO-MAR project strategy and description of the sampling programme 2007–2010. Deep Sea Research, Part II, 98, 220–230. https://doi.org/10.1016/j.dsr2.2013.06.012.

    Article  Google Scholar 

  • Roark, E. B., Guilderson, T. P., Dunbar, R. B., & Ingram, B. L. (2006). Radiocarbon- based ages and growth rates of Hawaiian deep-sea corals. Marine Ecology Progress Series, 327, 1–14.

    Article  Google Scholar 

  • Rogers, A. D. (1999). The biology of Lophelia pertusa (Linnaeus 1758) and other deep-water reef-forming corals and impacts from human activities. International Review of Hydrobiology, 84, 315–406.

    Article  Google Scholar 

  • Rogers, A. D., Baco, A., Griffiths, H., Hart, T., & Hall-Spencer, J. M. (2007). Corals on seamounts. In T. J. Pitcher, T. Morato, P. J. B. Hart, M. R. Clark, N. Haggan, & R. S. Santos (Eds.), Seamounts: Ecology, fisheries and conservation (Blackwell Fisheries and Aquatic Resources Series 12) (pp. 141–169). Oxford: Blackwell Publishing.

    Chapter  Google Scholar 

  • Rogers, A. D., Tyler, P. A., Connelly, D. P., Copley, J. T., James, R., et al. (2012). The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLoS Biology, 10(1), e1001234. https://doi.org/10.1371/journal.pbio.1001234.

    Article  Google Scholar 

  • Rolinski, S., Segschneider, J., & Sundermann, J. (2001). Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations. Deep-Sea Research Part II, 48, 3469–3485. https://doi.org/10.1016/S0967-0645(01)00053-4.

    Article  Google Scholar 

  • Rowden, A. A., Schlacher, T. A., Williams, A., Clark, M. R., Stewart, R., Althaus, F., Bowden, D. A., Consalvey, M., Robinson, W., & Dowdney, J. (2010). A test of the seamount oasis hypothesis: Seamounts support higher epibenthic mega faunal biomass than adjacent slopes. Marine Ecology, 31(suppl. 1), 95–106.

    Article  Google Scholar 

  • Schlacher, T. A., Baco, A. R., Rowden, A. A., O'Hara, T. D., Clark, M. R., Kelley, C., & Dower, J. F. (2014). Seamount benthos in a cobalt-rich crust region of the central Pacific: Conservation challenges for future seabed mining. Diversity and Distributions, 20, 491–502. https://doi.org/10.1111/ddi.12142.

    Article  Google Scholar 

  • Secretariat of the Pacific Community. (2013). In E. Baker, Y. Beaudoin (Eds.) Deep sea minerals: Sea-floor massive sulphides, a physical, biological, environmental and technical review. Vol. 1A. Secretariat of the Pacific Community.

    Google Scholar 

  • Simpson, S. L., & Spadaro, D. A. (2016). Bioavailability and chronic toxicity of metal sulfide minerals to benthic marine invertebrates: Implications for deep sea exploration, mining and tailings disposal. Environmental Science & Technology, 50, 4061–4070.

    Article  Google Scholar 

  • Smith, C. (2013). Biology associated with manganese nodules. In E. Baker, & Y. Beaudoin (Eds.) (2013) Deep sea minerals: Manganese nodules, a physical, biological, environmental and technical review. Vol. 1B (pp. 19–26). Secretariat of the Pacific Community.

    Google Scholar 

  • Steiner, R. (2009). Independent review of the environmental impact statement for the proposed Nautilus Minerals Solwara 1 Seabed Mining Project, Papua New Guinea. http://www.deepseaminingoutofourdepth.org/wp-content/uploads/Steiner-independent -review-DSM1.pdf.

  • Thiel, H., & Schriever, G. (1990). Deep-sea mining, environmental impact and the DISCOL project. Ambio, 19, 245–252.

    Google Scholar 

  • Thiel, H., Foell, E. J., & Schriever, G. (1991). Potential environmental effects of deep seabed mining. Berichte des ZentrumsfürMeeres- und Klimaforschung der Universität Hamburg, Vol. 26, 243 pp.

    Google Scholar 

  • Thomson, J., & Weaver, P. P. E. (1994). An AMS radiocarbon method to determine the emplacement time of recent deep-sea turbidites. Sedimentary Geology, 89, 1–7.

    Article  Google Scholar 

  • UNCED. (1992). Rio declaration on environment and development. United Nations Conference on Environment and Development, Rio de Janeiro, 3–14 June 1992. http://www.unesco.org/education/pdf/RIO_E.PDF.

  • United States Geological Survey. (1999). Metal prices in the United States through 1998 compiled by Patricia A. Plunkert and Thomas S. Jones. 179 pp.

    Google Scholar 

  • Van Dover, C. L. (2011). Mining seafloor massive sulphides and biodiversity: What is at risk? ICES Journal of Marine Science, 68, 341–348.

    Article  Google Scholar 

  • Van Dover, C. L. (2014). Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: A review. Marine Environmental Research, 102, 59–72.

    Article  Google Scholar 

  • Van Dover, C. L., Aronson, J., Pendleton, L., Smith, S., Arnaud-Hoand, S., Mareno-Mateos, D., Barbier, E., Billett, D., Bowers, K., Danovaro, R., Edwards, A., Kellert, S., Morato, T., Pollard, E., Rogers, A., & Warner, R. (2014). Ecological restoration in the deep sea: Desiderata. Marine Policy, 44, 98–106.

    Article  Google Scholar 

  • Van Dover, C. L., Ardron, J. A., Escobar, E., Gianni, M., Gjerde, K. M., Jaeckel, A., Jones, D. O. B., Levin, L. A., Niner, H. J., Pendleton, L., Smith, C. R., Thiele, T., Turner, P. J., Watling, L., & Weaver, P. P. E. (2017). Biodiversity loss from deep-sea mining. Nature Geoscience, 10, 464–465. 2017/06/26/online10, 464.

    Article  Google Scholar 

  • Van Dover, C. L., Arnaud-Haond, S., Gianni, M., Helmreich, S., Huber, J. A., Jaeckel, A. L., Metaxasg, A., Pendletonh, L. H., Peterseni, S., Ramirez-Llodraj, E., Steinbergk, P. E., Tunnicliffel, V., & Yamamoto, H. (2018). Scientific rationale and international obligations for protection of active hydrothermal vent ecosystems from deep-sea mining. Marine Policy, 90(January), 20–28. https://doi.org/10.1016/j.marpol.2018.01.020.

    Article  Google Scholar 

  • Vanreusel, A., Hilario, A., Ribeiro, P. A., Menot, L., & Arbizu, P. M. (2016). Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Scientific Reports, 6, 26808. https://doi.org/10.1038/srep26808.

    Article  Google Scholar 

  • Volkmann, S. E., & Lehnen, F. (2017). Production key figures for planning the mining of manganese nodules. Marine Georesources & Geotechnology, 36(3), 360–375, https://doi.org/10.1080/1064119X.2017.1319448

  • Watling, L., Guinotte, J., Clark, M. R., & Smith, C. R. (2013). A proposed biogeography of the deep ocean floor. Progress in Oceanography, 111, 91e112.

    Article  Google Scholar 

  • Weaver, P. P. E., Billett, D. S. M., & Van Dover, C. L. (2018). Environmental risks of deep-sea mining. In M. Salomon & T. Markus (Eds.), Handbook on marine environment protection (Science, impacts and sustainable management) (pp. 215–245). Cham: Springer.

    Chapter  Google Scholar 

  • Williams, A., Schlacher, T. A., Rowden, A. A., Althaus, F., Clark, M. R., Bowden, D. A., Stewart, R., Bax, N. J., Consalvey, M., & Kloser, R. J. (2010). Seamount megabenthic assemblages fail to recover from trawling impacts. Marine Ecology, 31(Suppl 1), 183–199.

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Community’s Horizon 2020 Research and Innovation Programme for Blue Growth under grant agreement no. 688975 (Blue Nodules) for PPEW and grant agreement no. 689518 (Marine Ecosystem Restoration in Changing European Seas, MERCES) for DSMB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip P. E. Weaver .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weaver, P.P.E., Billett, D. (2019). Environmental Impacts of Nodule, Crust and Sulphide Mining: An Overview. In: Sharma, R. (eds) Environmental Issues of Deep-Sea Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-12696-4_3

Download citation

Publish with us

Policies and ethics