Skip to main content

Polypropylene Blends: Properties Control by Design

  • Chapter
  • First Online:
Polypropylene Handbook

Abstract

This chapter focused on the structure-property-processing relationship of polypropylene blends (PP binary and ternary blends). The topics covers PP/thermoplastic, PP/elastomer, PP/thermoset, PP/recycled polymer and all-PP blends. The toughening, crystallization and compatibilization strategies for PP blends are summarized. The processing techniques and properties (e.g. rheology, foamability, dyeability, etc.) of PP blends are discussed. Some of the ways of properties optimization, modeling of flow behavior and molecular simulation are documented. This chapter ends with a future trend and prospective of the PP blends based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu Y, Luo F, Bai H et al (2013) Synergistic effects of β-modification and impact polypropylene copolymer on brittle-ductile transition of polypropylene random copolymer. J Appl Polym Sci 129:3613–3622. https://doi.org/10.1002/app.39107

    Article  CAS  Google Scholar 

  2. Zhang H, Wang J, Cao S, Shan A (2000) Toughened polypropylene with balanced rigidity (I): preparation and chemical structure of toughening master batch. Polym Adv Technol 11:334–341. https://doi.org/10.1002/1099-1581(200007)11:7<334::AID-PAT976>3.0.CO;2-K

  3. Chow WS, Abu Bakar A, Mohd Ishak ZA et al (2005) Effect of maleic anhydride-grafted ethylene–propylene rubber on the mechanical, rheological and morphological properties of organoclay reinforced polyamide 6/polypropylene nanocomposites. Eur Polym J 41:687–696. https://doi.org/10.1016/j.eurpolymj.2004.10.041

    Article  CAS  Google Scholar 

  4. Karger-Kocsis J (2000) Swirl mat- and long discontinuous fiber mat-reinforced polypropylene composites—status and future trends. Polym Compos 21:514–522. https://doi.org/10.1002/pc.10206

    Article  CAS  Google Scholar 

  5. Zhang RH, Li RKY (2013) Effect of syndiotactic polystyrene on the crystallization behavior of isotactic polypropylene/syndiotactic polystyrene blends with and without β-nucleating agent. Polym Int 62:919–927. https://doi.org/10.1002/pi.4378

    Article  CAS  Google Scholar 

  6. Lipatov YS (2002) Polymer blends and interpenetrating polymer networks at the interface with solids. Prog Polym Sci 27:1721–1801. https://doi.org/10.1016/S0079-6700(02)00021-7

    Article  CAS  Google Scholar 

  7. Koning C, Van Duin M, Pagnoulle CJR (1998) Strategies for compatibilization of polymer blends. Prog Polym Sci 23:707–757. https://doi.org/10.1016/s0079-6700(97)00054-3

    Article  CAS  Google Scholar 

  8. Higgins JS, Tambasco M, Lipson JEG (2005) Polymer blends; stretching what we can learn through the combination of experiment and theory. Prog Polym Sci 30:832–843. https://doi.org/10.1016/j.progpolymsci.2005.06.001

    Article  CAS  Google Scholar 

  9. He Y, Zhu B, Inoue Y (2004) Hydrogen bonds in polymer blends. Prog Polym Sci 29:1021–1051. https://doi.org/10.1016/j.progpolymsci.2004.07.002

    Article  CAS  Google Scholar 

  10. Imre B, Renner K, Pukánszky B (2014) Interactions, structure and properties in poly (lactic acid)/thermoplastic polymer blends. Express Polym Lett 8:2–14. https://doi.org/10.3144/expresspolymlett.2014

  11. Costa LC, Neto AT, Hage E (2014) PMMA/SAN and SAN/PBT nanoblends obtained by blending extrusion using thermodynamics and microrheology basis. Express Polym Lett 8:164–176. https://doi.org/10.3144/expresspolymlett.2014.20

    Article  CAS  Google Scholar 

  12. Taguet A, Cassagnau P, Lopez-Cuesta J-M (2014) Progress in polymer science structuration, selective dispersion and compatibilizing effect of (nano) fillers in polymer blends. Prog Polym Sci 39:1526–1563. https://doi.org/10.1016/j.progpolymsci.2014.04.002

    Article  CAS  Google Scholar 

  13. Chow WS, Mohd Ishak ZA, Karger-Kocsis J et al (2003) Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites. Polymer 44:7427–7440. https://doi.org/10.1016/j.polymer.2003.09.006

    Article  CAS  Google Scholar 

  14. Aranburu N, Eguiazábal JI (2015) Improved mechanical properties of compatibilized polypropylene/polyamide-12 blends. Int J Polym Sci 2015:8 pages. https://doi.org/10.1155/2015/742540

  15. Zhang Z, Wang C, Du Y et al (2013) Preparation and investigation of the β-nucleated polypropylene/polystyrene blends. J Appl Polym Sci 127:1114–1121. https://doi.org/10.1002/app.37560

    Article  CAS  Google Scholar 

  16. Acosta MN, Ercoli DR, Goizueta GS et al (2011) Blends of PP/PE co-octene for modified atmosphere packaging applications. Packag Technol Sci 24:223–235. https://doi.org/10.1002/pts.929

    Article  CAS  Google Scholar 

  17. Gartner C, Suárez M, López BL (2008) Grafting of maleic anhydride on polypropylene and its effect on blending with poly (ethylene terephthalate). Polym Eng Sci 48:1910–1916. https://doi.org/10.1002/pen.21106

    Article  CAS  Google Scholar 

  18. Yu L, Simon G, Shanks RA, Noblle MR (2000) Crystallization and compatibilization of polypropylene-liquid crystalline polyester blends. J Appl Polym Sci 77:2229–2236. https://doi.org/10.1002/1097-4628(20000906)77:10%3c2229:AID-APP16%3e3.0.CO;2-Z

    Article  CAS  Google Scholar 

  19. Liang YC, Isayev AI (2002) Self-reinforced polypropylene/lcp extruded strands and their moldings. Polym Eng Sci 42:994–1018. https://doi.org/10.1002/pen.11008

  20. Flaris V, Montero N, Steinberg C (2012) Surface energy of polypropylene/polysulfone compatibilized blends. J Vinyl Addit Technol 18:222–227. https://doi.org/10.1002/vnl.20307

    Article  CAS  Google Scholar 

  21. Yao XR, Wang L, Guo ZX, Yu J (2013) Morphology stabilization of the polypropylene/polystyrene nanoblends prepared by diffusion and polymerization of styrene in isotactic polypropylene pellets during melt mixing by the incorporation of divinylbenzene. J Appl Polym Sci 127:1092–1097. https://doi.org/10.1002/app.37951

    Article  CAS  Google Scholar 

  22. Öksüz M, Eroğlu M (2005) Effect of the elastomer type on the microstructure and mechanical properties of polypropylene. J Appl Polym Sci 98:1445–1450. https://doi.org/10.1002/app.22271

    Article  CAS  Google Scholar 

  23. Su Z, Jiang P, Li Q et al (2004) Mechanical properties and morphological structures relationship of blends based on sulfated EPDM ionomer and polypropylene. J Appl Polym Sci 94:1504–1510. https://doi.org/10.1002/app.21068

    Article  CAS  Google Scholar 

  24. Chakraborty P, Ganguly A, Mitra S, Bhowmick AK (2008) Influence of phase modifiers on morphology and properties of thermoplastic elastomers prepared from ethylene propylene diene rubber and isotactic polypropylene. Polym Eng Sci 48:477–489. https://doi.org/10.1002/pen.20984

    Article  CAS  Google Scholar 

  25. Ma GQ, Zhao YH, Yan LT et al (2006) Blends of polypropylene with poly(cis-butadiene) rubber. III. Study on the phase structure and morphology of incompatible blends of polypropylene with poly(cis-butadiene) rubber. J Appl Polym Sci 100:4900–4909. https://doi.org/10.1002/app.23499

    Article  CAS  Google Scholar 

  26. Hristov V, Lach R, Krumova M, Grellmann W (2005) Fracture toughness of modified polypropylene/poly(styrene-ran-butadiene) blends. Polym Int 54:1632–1640. https://doi.org/10.1002/pi.1894

    Article  CAS  Google Scholar 

  27. Salmah H, Azra BN, Yusrina MD, Ismail H (2015) A comparative study of polypropylene/(chloroprene rubber) and (recycled polypropylene)/(chloroprene rubber) blends. J Vinyl Addit Technol 21:122–127. https://doi.org/10.1002/vnl.21390

    Article  CAS  Google Scholar 

  28. Karger-Kocsis J, Felhös D, Xu D, Schlarb AK (2008) Unlubricated sliding and rolling wear of thermoplastic dynamic vulcanizates (Santoprene®) against steel. Wear 265:292–300. https://doi.org/10.1016/j.wear.2007.10.010

    Article  CAS  Google Scholar 

  29. Tanrattanakul V, Kosonmetee K, Laokijcfaaroen P (2009) Polypropylene/natural rubber thermoplastic elastomer: effect of phenolic resin as a vulcanizing agent on mechanical properties and morphology. J Appl Polym Sci 112:3267–3275. https://doi.org/10.1002/app.29816

    Article  CAS  Google Scholar 

  30. Uthaipan N, Junhasavasdikul B, Nakason C (2015) Prediction models for the key mechanical properties of EPDM/PP blends as affected by processing parameters and their correlation with stress relaxation and phase morphologies 26:970–977. https://doi.org/10.1002/pat.3511

  31. Karger-Kocsis J, Kalló A, Kuleznev VN (1984) Phase structure of impact-modified polypropylene blends. Polymer 25:279–286. https://doi.org/10.1016/0032-3861(84)90337-9

    Article  CAS  Google Scholar 

  32. Jain AK, Nagpal AK, Singhal R, Gupta NK (2000) Effect of dynamic crosslinking on impact strength and other mechanical properties of polypropylene/ethylene-propylene-diene rubber blends. J Appl Polym Sci 78:2089–2103. https://doi.org/10.1002/1097-4628(20001213)78:12%3c2089:AID-APP50%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  33. Gupta NK, Jain AK, Singhal R, Nagpal AK (2000) Effect of dynamic crosslinking on tensile yield behavior of polypropylene/ethylene-propylene-diene rubber blends. J Appl Polym Sci 78:2104–2121. https://doi.org/10.1002/1097-4628(20001213)78:12%3c2104:AID-APP60%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  34. Naskar K, Gohs U, Wagenknecht U, Heinrich G (2009) PP-EPDM thermoplastic vulcanisates (TPVs) by electron induced reactive processing. Express Polym Lett 3:677–683. https://doi.org/10.3144/expresspolymlett.2009.85

    Article  CAS  Google Scholar 

  35. Nakason C, Wannavilai P, Kaesaman A (2006) Thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends: effect of compatibilizers and reactive blending. J Appl Polym Sci 100:4729–4740. https://doi.org/10.1002/app.23260

    Article  CAS  Google Scholar 

  36. Nakason C, Wannavilai P, Kaesaman A (2005) Thermoplastic vulcanizates based on epoxidized natural rubber/polypropylene blends: effect of epoxide levels in ENR molecules. J Appl Polym Sci 101:3046–3052. https://doi.org/10.1002/app.23926

    Article  CAS  Google Scholar 

  37. Verbois A, Cassagnau P, Michel A et al (2004) New thermoplastic vulcanizate, composed of polypropylene and ethylene-vinyl acetate copolymer crosslinked by tetrapropoxysilane: evolution of the blend morphology with respect to the crosslinking reaction conversion. Polym Int 53:523–535. https://doi.org/10.1002/pi.1428

    Article  CAS  Google Scholar 

  38. Soares BG, De Oliveira M, Meireles D et al (2008) Dynamically vulcanized polypropylene/nitrile rubber blends: the effect of peroxide/bis-maleimide curing system and different compatibilizing systems. J Appl Polym Sci 110:3566–3573. https://doi.org/10.1002/app.28946

    Article  CAS  Google Scholar 

  39. Van Dyke JD, Gnatowski M, Burczyk A (2008) Solvent resistance and mechanical properties in thermoplastic elastomer blends prepared by dynamic vulcanization. J Appl Polym Sci 109:1535–1546. https://doi.org/10.1002/app.28149

    Article  CAS  Google Scholar 

  40. Mandal AK, Siddhanta SK, Chakraborty D (2013) Chlorosulfonated polyethylene-polypropylene thermoplastic vulcanizate: mechanical, morphological, thermal, and rheological properties. J Appl Polym Sci 127:1268–1274. https://doi.org/10.1002/app.37725

    Article  CAS  Google Scholar 

  41. Babu RR, Singha NK, Naskar K (2010) Dynamically vulcanized blends of polypropylene and ethylene octene copolymer: influence of various coagents on thermal and rheological characteristics. J Appl Polym Sci 117:1578–1590. https://doi.org/10.1002/app.32023

    Article  CAS  Google Scholar 

  42. Wan C, Patel SH, Xanthos M (2003) Reactive melt modification of polypropylene with a crosslinkable polyester. Polym Eng Sci 43:1276–1288. https://doi.org/10.1002/pen.10108

    Article  CAS  Google Scholar 

  43. Jiang X, Huang H, Zhang Y, Zhang Y (2004) Dynamically cured polypropylene/epoxy blends. J Appl Polym Sci 92:1437–1448. https://doi.org/10.1002/app.13700

    Article  CAS  Google Scholar 

  44. Cui L, Zhou Z, Zhang Y et al (2007) Rheological behavior of polypropylene/novolac blends. J Appl Polym Sci 106:811–816. https://doi.org/10.1002/app.26515

    Article  CAS  Google Scholar 

  45. Phillips RA (2000) Macromorphology of polypropylene homopolymer tacticity mixtures. J Polym Sci, Part B: Polym Phys 38:1947–1964. https://doi.org/10.1002/1099-0488(20000801)38:15%3c1947:AID-POLB10%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  46. Flores-Gallardo SG, Sánchez-Valdes S, Ramos De Valle LF (2001) Polypropylene/polypropylene-grafted acrylic acid blends for multilayer films: preparation and characterization. J Appl Polym Sci 79:1497–1505. https://doi.org/10.1002/1097-4628(20010222)79:8%3c1497:AID-APP170%3e3.0.CO;2-3

    Article  CAS  Google Scholar 

  47. Saffar A, Jalali Dil E, Carreau PJ et al (2016) Phase behavior of binary blends of PP/PP-g-AA: limitations of the conventional characterization techniques. Polym Int 65:508–515. https://doi.org/10.1002/pi.5082

    Article  CAS  Google Scholar 

  48. Moya EL, Van Grieken R, Carrero A, Paredes B (2012) Bimodal poly(propylene) through binary metallocene catalytic systems as an alternative to melt blending. Macromol Symp 321–322:46–52. https://doi.org/10.1002/masy.201251107

    Article  CAS  Google Scholar 

  49. Fang Y, Sadeghi F, Fleuret G, Carreau PJ (2008) Properties of blends of linear and branched polypropylenes in film blowing. Can J Chem Eng 86:6–14. https://doi.org/10.1002/cjce.20011

    Article  CAS  Google Scholar 

  50. Miskolczi N, Kucharczyk P, Sedlarik V, Szakacs H (2013) Plastic waste minimization: compatibilization of polypropylene/polyamide 6 blends by polyalkenyl-poly-maleic-anhydride-based agents. J Appl Polym Sci 129:3028–3037. https://doi.org/10.1002/app.38724

    Article  CAS  Google Scholar 

  51. Garcia PS, Gouveia RF, Maia JM et al (2018) 2D and 3D imaging of the deformation behavior of partially devulcanized rubber/polypropylene blends. Express Polym Lett 12:1047–1060. https://doi.org/10.3144/expresspolymlett.2018.92

    Article  CAS  Google Scholar 

  52. Inoya H, Wei Leong Y, Klinklai W et al (2012) Compatibilization of recycled poly(ethylene terephthalate) and polypropylene blends: effect of polypropylene molecular weight on homogeneity and compatibility. J Appl Polym Sci 124:3947–3955. https://doi.org/10.1002/app.34405

    Article  CAS  Google Scholar 

  53. Barhoumi N, Jaziri M, Massardier V, Cassagnau P (2008) Valorization of poly(butylene terephthalate) wastes by blending with virgin polypropylene: effect of the composition and the compatibilization. Polym Eng Sci 48:1592–1599. https://doi.org/10.1002/pen.21116

    Article  CAS  Google Scholar 

  54. Kukaleva N, Simon GP, Kosior E (2003) Binary and ternary blends of recycled high-density polyethylene containing polypropylenes. Polym Eng Sci 43:431–443. https://doi.org/10.1002/pen.10035

    Article  CAS  Google Scholar 

  55. Kazemi Y, Ramezani Kakroodi A, Rodrigue D (2015) Compatibilization efficiency in post-consumer recycled polyethylene/polypropylene blends: effect of contamination. Polym Eng Sci 55:2368–2376. https://doi.org/10.1002/pen.24125

    Article  CAS  Google Scholar 

  56. Jaziri M, Barhoumi N, Massardier V, Mélis F (2008) Blending PP with PA6 industrial wastes: effect of the composition and the compatibilization. J Appl Polym Sci 107:3451–3458. https://doi.org/10.1002/app.27542

    Article  CAS  Google Scholar 

  57. Tchomakov KP, Favis BD, Huneault MA et al (2005) Mechanical properties and morphology of ternary PP/EPDM/PE blends. Can J Chem Eng 83:300–309. https://doi.org/10.1002/cjce.5450830216

    Article  CAS  Google Scholar 

  58. Vranjes N, Rek V (2007) Effect of EPDM on morphology, mechanical properties, crystallization behavior and viscoelastic properties of iPP + HDPE blends. Macromol Symp 258:90–100. https://doi.org/10.1002/masy.200751210

    Article  CAS  Google Scholar 

  59. Panda B, Bhattacharyya AR, Kulkarni AR (2013) Morphology and dielectric relaxation spectroscopy of ternary polymer blends of polyamide6, polypropylene, and acrylonitrile butadiene styrene co-polymer: Influence of compatibilizer and multiwall carbon nanotubes. J Appl Polym Sci 127:1433–1445. https://doi.org/10.1002/app.38074

    Article  CAS  Google Scholar 

  60. Lima PS, Oliveira JM, Costa VAF (2015) Partial replacement of EPR by GTR in highly flowable PP/EPR blends: effects on morphology and mechanical properties. J Appl Polym Sci 132:42011 (1–9). https://doi.org/10.1002/app.42011

  61. Debout MA, Robertson RE (2004) Impact strength and elongation-to-break of compatibilized ternary blends of polypropylene, nylon 66, and polystyrene. Polym Eng Sci 44:1800–1809. https://doi.org/10.1002/pen.20182

    Article  CAS  Google Scholar 

  62. Šmit I, Radonjič G (2000) Effects of SBS on phase morphology of iPP/aPS blends. Polym Eng Sci 40:2144–2160. https://doi.org/10.1002/pen.11347

    Article  Google Scholar 

  63. Jazani OM, Arefazar A, Jafari SH et al (2011) A study on the effects of SEBS-g-MAH on the phase morphology and mechanical properties of polypropylene/polycarbonate/SEBS ternary polymer blends. J Appl Polym Sci 121:2680–2687. https://doi.org/10.1002/app.33715

    Article  CAS  Google Scholar 

  64. Chand N, Naik AM, Khaira HK (2007) Development of UHMWPE modified PP/PET blends and their mechanical and abrasive wear behavior. Polym Compos 28:267–272. https://doi.org/10.1002/pc.20302

    Article  CAS  Google Scholar 

  65. Yang L, Huang J, Lu X et al (2015) Influences of dicumyl peroxide on morphology and mechanical properties of polypropylene/poly(styrene-b-butadiene-b-styrene) blends via vane-extruder. J Appl Polym Sci 132:41543 (1–12). https://doi.org/10.1002/app.41543

  66. Jia S, Qu J, Liu W et al (2014) Thermoplastic polyurethane/polypropylene blends based on novel vane extruder: a study of morphology and mechanical properties. Polym Eng Sci 54:716–724. https://doi.org/10.1002/pen.23598

    Article  CAS  Google Scholar 

  67. Qu JP, Chen HZ, Liu SR et al (2013) Morphology study of immiscible polymer blends in a vane extruder. J Appl Polym Sci 128:3576–3585. https://doi.org/10.1002/app.38573

    Article  CAS  Google Scholar 

  68. Shon K, Bumm SH, White JL (2008) A comparative study of dispersing a polyamide 6 into a polypropylene melt in a buss kneader, continuous mixer, and modular intermeshing corotating and counter-rotating twin screw extruders. Polym Eng Sci 48:755–766. https://doi.org/10.1002/pen.20941

    Article  CAS  Google Scholar 

  69. Polaskova M, Cermak R, Sedlacek T et al (2010) Extrusion of polyethylene/polypropylene blends with microfibrillar-phase morphology. Polym Compos 31:1427–1433. https://doi.org/10.1002/pc.20928

    Article  CAS  Google Scholar 

  70. Wang K, Zhou C, Zhang H, Zhao D (2002) Modification of polypropylene by melt vibration blending with ultra high molecular weight polyethylene. Adv Polym Technol 21:164–176. https://doi.org/10.1002/adv.10020

    Article  CAS  Google Scholar 

  71. Tortorella N, Beatty CL (2008) Morphology and crystalline properties of impact-modified polypropylene blends. Polym Eng Sci 48:1476–1486. https://doi.org/10.1002/pen.21102

    Article  CAS  Google Scholar 

  72. Teng J, Otaigbe JU, Taylor EP (2004) Reactive blending of functionalized polypropylene and polyamide 6: in situ polymerization and in situ compatibilization. Polym Eng Sci 44:648–659. https://doi.org/10.1002/pen.20059

    Article  CAS  Google Scholar 

  73. Godshall D, White C, Wilkes GL (2001) Effect of compatibilizer molecular weight and maleic anhydride content on interfacial adhesion of polypropylene-PA6 bicomponent fibers. J Appl Polym Sci 80:130–141. https://doi.org/10.1002/1097-4628(20010411)80:2%3c130:AID-APP1081%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  74. Fallahi E, Barmar M, Kish MH (2008) Micro and nano fibrils from polypropylene/nylon 6 blends. J Appl Polym Sci 108:1473–1481. https://doi.org/10.1002/app.27792

    Article  CAS  Google Scholar 

  75. Soroudi A, Skrifvars M (2012) Electroconductive polyblend fibers of polyamide-6/polypropylene/ polyaniline: electrical, morphological, and mechanical characteristics. Polym Eng Sci 52:1606–1612. https://doi.org/10.1002/pen.23074

    Article  CAS  Google Scholar 

  76. Auinger T, Stadlbauer M (2010) Inter-relationship between processing conditions and mechanical properties of blown film from different polypropylenes and high melt strength polypropylene blends. J Appl Polym Sci 117:155–162. https://doi.org/10.1002/app.31928

    Article  CAS  Google Scholar 

  77. Jarus D, Hiltner A, Baer E (2001) Microlayer coextrusion as a route to innovative blend structures. Polym Eng Sci 41:2162–2171. https://doi.org/10.1002/pen.10911

    Article  CAS  Google Scholar 

  78. Xanthos M, Chandavasu C, Sirkar KK, Gogos CG (2002) Melt processed microporous films from compatibilized immiscible blends with potential as membranes. Polym Eng Sci 42:810–825. https://doi.org/10.1002/pen.10993

    Article  CAS  Google Scholar 

  79. Sadeghi F, Ajji A, Carreau PJ (2008) Microporous membranes obtained from polypropylene blends with superior permeability properties. J Polym Sci, Part B: Polym Phys 46:148–157. https://doi.org/10.1002/polb.21350

    Article  CAS  Google Scholar 

  80. Ait-Kadi A, Bousmina M, Yousefi AA, Mighri F (2007) High performance structured polymer barrier films obtained from compatibilized polypropylene/ethylene vinyl alcohol blends. Polym Eng Sci 47:1114–1121. https://doi.org/10.1002/pen.20794

    Article  CAS  Google Scholar 

  81. Mohanraj J, Chapleau N, Ajji A et al (2003) Production, properties and impact toughness of die-drawn toughened polypropylenes. Polym Eng Sci 43:1317–1336. https://doi.org/10.1002/Pen.10112

  82. Mondal M, Gohs U, Wagenknecht U, Heinrich G (2013) Efficiency of high energy electrons to produce polypropylene/natural rubber-based thermoplastic elastomer. Polym Eng Sci 53:1696–1705. https://doi.org/10.1002/pen.23414

    Article  CAS  Google Scholar 

  83. Ali ZI, Youssef HA, Said HM, Saleh HH (2006) Influence of electron beam irradiation and polyfunctional monomer loading on the physico-chemical properties of polyethylene/polypropylene blends. Adv Polym Technol 25:208–217. https://doi.org/10.1002/adv.20072

    Article  CAS  Google Scholar 

  84. Wang M, Ma J, Chu R et al (2012) Effect of the introduction of polydimethylsiloxane on the foaming behavior of block-copolymerized polypropylene. J Appl Polym Sci 123:2726–2732. https://doi.org/10.1002/app.34854

    Article  CAS  Google Scholar 

  85. Zhang P, Zhou NQ, Wu QF et al (2007) Microcellular foaming of PE/PP blends. J Appl Polym Sci 104:4149–4159. https://doi.org/10.1002/app.26071

    Article  CAS  Google Scholar 

  86. Spitael P, Macosko CW (2004) Strain hardening in polypropylenes and its role in extrusion foaming. Polym Eng Sci 44:2090–2100. https://doi.org/10.1002/pen.20214

    Article  CAS  Google Scholar 

  87. Wang B, Huang HX, Wang ZY (2015) Process-induced phase and crystal morphologies in water-assisted injection molded polypropylene/polymeric β-nucleating agent blend parts. Polym Eng Sci 55:1698–1705. https://doi.org/10.1002/pen.24008

    Article  CAS  Google Scholar 

  88. Wang WQ, Kontopoulou M (2004) Rotational molding of polypropylene/ultra-low-density ethylene-α-olefin copolymer blends. Polym Eng Sci 44:1662–1669. https://doi.org/10.1002/pen.20165

    Article  CAS  Google Scholar 

  89. Pires M, Mauler RS, Liberman SA (2004) Structural characterization of reactor blends of polypropylene and ethylene-propylene rubber. J Appl Polym Sci 92:2155–2162. https://doi.org/10.1002/app.20193

    Article  CAS  Google Scholar 

  90. Liu T, Lei Y, Chen Z et al (2015) Effects of processing conditions on foaming behaviors of polyetherimide (PEI) and PEI/polypropylene blends in microcellular injection molding process. J Appl Polym Sci 132:41443. https://doi.org/10.1002/app.41443

    Article  CAS  Google Scholar 

  91. Su R, Jiang K, Ge Y et al (2011) Shear-induced fibrillation and resultant mechanical properties of injection-molded polyamide 1010/isotactic polypropylene blends. Polym Int 60:1655–1662. https://doi.org/10.1002/pi.3148

    Article  CAS  Google Scholar 

  92. Tang J, Tang W, Yuan H, Jin R (2010) Super-toughed polymer blends derived from polypropylene random copolymer and ethylene/styrene interpolymer. J Appl Polym Sci 115:190–197. https://doi.org/10.1002/app.31035

    Article  CAS  Google Scholar 

  93. Tang W, Tang J, Yuan H, Jin R (2011) Crystallization behavior and mechanical properties of polypropylene random copolymer/poly(ethylene-octene) blends. J Appl Polym Sci 122:461–468. https://doi.org/10.1002/app.34162

    Article  CAS  Google Scholar 

  94. Li X, Su R, Gao J et al (2011) Toughening of polypropylene with crystallizable poly(ethylene oxide). Polym Int 60:781–786. https://doi.org/10.1002/pi.3015

    Article  CAS  Google Scholar 

  95. Kakkar D, Maiti SN (2012) Effect of flexibility of ethylene vinyl acetate and crystallization of polypropylene on the mechanical properties of i-PP/EVA blends. J Appl Polym Sci 123:1905–1912. https://doi.org/10.1002/app.34680

    Article  CAS  Google Scholar 

  96. Premphet K, Paecharoenchai W (2002) Polypropylene/metallocene ethylene-octene copolymer blends with a bimodal particle size distribution: mechanical properties and their controlling factors. J Appl Polym Sci 85:2412–2418. https://doi.org/10.1002/app.10886

    Article  CAS  Google Scholar 

  97. Thanyaprueksanon S, Thongyai S, Praserthdam P (2007) New synthesis methods for polypropylene-co-ethylene-propylene rubber. J Appl Polym Sci 103:3609–3616. https://doi.org/10.1002/app.25392

    Article  CAS  Google Scholar 

  98. Liu G, Zhang X, Li X et al (2012) Correlation of miscibility and mechanical properties of polypropylene/olefin block copolymers: effect of chain composition. J Appl Polym Sci 125:666–675. https://doi.org/10.1002/app.36244

    Article  CAS  Google Scholar 

  99. Bai H, Wang Y, Song B, Han L (2008) Synergistic toughening effects of nucleating agent and ethylene–octene copolymer on polypropylene. J Appl Polym Sci 108:3270–3280. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  100. Fanegas N, Gómez MA, Jiménez I et al (2008) Optimizing the balance between impact strength and stiffness in polypropylene/elastomer blends by incorporation of a nucleating agent. Polym Eng Sci 48:80–87. https://doi.org/10.1002/pen.20886

    Article  CAS  Google Scholar 

  101. Grein C, Gahleitner M (2008) On the influence of nucleation on the toughness of iPP/EPR blends with different rubber molecular architectures. Express Polym Lett 2:392–397. https://doi.org/10.3144/expresspolymlett.2008.47

    Article  CAS  Google Scholar 

  102. Jafari SH, Gupta AK (2000) Impact strength and dynamic mechanical properties correlation in elastomer-modified polypropylene. J Appl Polym Sci 78:962–971. https://doi.org/10.1002/1097-4628(20001031)78:5%3c962:AID-APP40%3e3.0.CO;2-5

    Article  CAS  Google Scholar 

  103. Varga J (1995) Crystallization, melting and supermolecular structure of isotactic polypropylene. Polypropylene structure, blends and composites. Springer, Netherlands, Dordrecht, pp 56–115

    Chapter  Google Scholar 

  104. Chen HB, Karger-Kocsis J, Wu JS, Varga J (2002) Fracture toughness of α- and β-phase polypropylene homopolymers and random- and block-copolymers. Polymer 43:6505–6514. https://doi.org/10.1016/S0032-3861(02)00590-6

    Article  CAS  Google Scholar 

  105. Wang ZG, Phillips RA, Hsiao BS (2001) Morphology development during isothermal crystallization. II. Isotactic and syndiotactic polypropylene blends. J Polym Sci, Part B: Polym Phys 39:1876–1888. https://doi.org/10.1002/polb.1162

    Article  CAS  Google Scholar 

  106. Finlay J, Hill MJ, Barham PJ et al (2003) Mechanical properties and characterization of slowly cooled isotactic polypropylene/high-density polyethylene blends. J Polym Sci, Part B: Polym Phys 41:1384–1392. https://doi.org/10.1002/polb.10440

    Article  CAS  Google Scholar 

  107. Borysiak S (2011) The supermolecular structure of isotactic polypropylene/atactic polystyrene blends. Polym Eng Sci 51:2505–2516. https://doi.org/10.1002/pen.22039

    Article  CAS  Google Scholar 

  108. Yang J, White JL (2012) Crystallization behavior of polypropylene/ethylene butene copolymer blends. J Appl Polym Sci 126:2049–2058. https://doi.org/10.1002/app.35184

    Article  CAS  Google Scholar 

  109. Zhang Y, Huang Y, Mai K (2005) Crystallization and dynamic mechanical properties of polypropylene/polystyrene blends modified with maleic anhydride and styrene. J Appl Polym Sci 96:2038–2045. https://doi.org/10.1002/app.21658

    Article  CAS  Google Scholar 

  110. Yang Z, Zhang Z, Tao Y, Mai K (2009) Preparation, crystallization behavior, and melting characteristics of β-nucleated isotactic polypropylene blends with polyamide. 112:1–8. https://doi.org/10.1002/app

  111. Marinelli AL, Bretas RES (2002) Blends of polypropylene resins with a liquid crystalline polymer. I. Isothermal crystallization. J Appl Polym Sci 87:916–930. https://doi.org/10.1002/app.11386

    Article  CAS  Google Scholar 

  112. Guan Y, Wang S, Zheng A, Xiao H (2003) Crystallization behaviors of polypropylene and functional polypropylene. J Appl Polym Sci 88:872–877. https://doi.org/10.1002/app.11668

    Article  CAS  Google Scholar 

  113. Wu Y, Yang Y, Li B, Han Y (2006) Reactive blending of modified polypropylene and polyamide 12: effects of compatibilizer content on crystallization and blend morphology. J Appl Polym Sci 100:3187–3192. https://doi.org/10.1002/app.23572

    Article  CAS  Google Scholar 

  114. Wang D, Gao J (2006) Melting, nonisothermal crystallization behavior and morphology of polypropylene/random ethylene-propylene copolymer blends. J Appl Polym Sci 99:670–678. https://doi.org/10.1002/app.22507

    Article  CAS  Google Scholar 

  115. Lin Z, Chen C, Li B et al (2012) Compatibility, morphology, and crystallization behavior of compatibilized β-nucleated polypropylene/poly(trimethylene terephthalate) blends. J Appl Polym Sci 125:1616–1624. https://doi.org/10.1002/app.35635

    Article  CAS  Google Scholar 

  116. Hao XQ, Zheng GQ, Dai K et al (2011) Facile preparation of rich β-transcrystallinity in PET fiber/iPP composites. Express Polym Lett 5:1017–1026. https://doi.org/10.3144/expresspolymlett.2011.99

    Article  CAS  Google Scholar 

  117. Lima PS, Oliveira JM, Costa VAF (2015) Crystallization kinetics of thermoplastic elastomeric blends based on ground tyre rubber. J Appl Polym Sci 132:42589 (1–11). https://doi.org/10.1002/app.42589

  118. Paul S, Kale DD (2002) Rheological study of polypropylene copolymer/polyolefinic elastomer blends. J Appl Polym Sci 84:665–671. https://doi.org/10.1002/app.10376

    Article  CAS  Google Scholar 

  119. Zhang XM, Li H, Chen WX, Feng LF (2012) Rheological properties and morphological evolutions of polypropylene/ethylene-butene copolymer blends. Polym Eng Sci 52:1740–1748. https://doi.org/10.1002/pen.23116

    Article  CAS  Google Scholar 

  120. López Manchado MA, Biagiotti J, Kenny JM (2001) Rheological behavior and processability of polypropylene blends with rubber ethylene propylene diene terpolymer. J Appl Polym Sci 81:1–10. https://doi.org/10.1002/app.1407

    Article  Google Scholar 

  121. Ardakani F, Jahani Y, Morshedian J (2012) Dynamic viscoelastic behavior of polypropylene/polybutene-1 blends and its correlation with morphology. J Appl Polym Sci 125:640–648. https://doi.org/10.1002/app.36324

    Article  CAS  Google Scholar 

  122. Marguerat F, Carreau PJ, Michel A (2002) Morphology and rheological properties of polypropylene/reactive elastomer blends. Polym Eng Sci 42:1941–1955. https://doi.org/10.1002/pen.11087

    Article  CAS  Google Scholar 

  123. Shi D, Jiang F, Ke Z et al (2006) Melt rheological properties of polypropylene-polyamide6 blends compatibilized with maleic anhydride-grafted polypropylene. Polym Int 55:701–707. https://doi.org/10.1002/pi.2036

    Article  CAS  Google Scholar 

  124. Liao HY, Zheng LY, Hu YB et al (2015) Dynamic rheological behavior of reactively compatibilized polypropylene/polyamide 6 blending melts. J Appl Polym Sci 132:42091 (1–8). https://doi.org/10.1002/app.42091

  125. Li Z, Chen M, Ma W (2016) Promoting effect of crystallization on the foaming behavior in polypropylene homopolymer/polypropylene block copolymer blends. Polym Eng Sci 56:1175–1181. https://doi.org/10.1002/pen.24351

    Article  CAS  Google Scholar 

  126. Laguna-Gutierrez E, Van Hooghten R, Moldenaers P, Rodriguez-Perez MA (2015) Understanding the foamability and mechanical properties of foamed polypropylene blends by using extensional rheology. J Appl Polym Sci 132:42430 (1–14). https://doi.org/10.1002/app.42430

  127. Mirjalili F, Moradian S, Ameri F (2011) Attaining optimal dyeability and tensile properties of polypropylene/poly(ethylene terephthalate) blends with a special cubic mixture experimental design. J Appl Polym Sci 121:3201–3210. https://doi.org/10.1002/app.33859

    Article  CAS  Google Scholar 

  128. Mouffok S, Kaci M (2015) Artificial weathering effect on the structure and properties of polypropylene/polyamide-6 blends compatibilized with PP-g-MA. J Appl Polym Sci 132. https://doi.org/10.1002/app.41722

  129. Jose S, Francis B, Thomas S, Karger-Kocsis J (2006) Morphology and mechanical properties of polyamide 12/polypropylene blends in presence and absence of reactive compatibiliser. Polymer 47:3874–3888. https://doi.org/10.1016/j.polymer.2006.03.046

    Article  CAS  Google Scholar 

  130. Wang L, Tan H, Gong J, Tang T (2014) Relationship between branch length and the compatibilizing effect of polypropylene-g-polystyrene graft copolymer on polypropylene/polystyrene blends. J Appl Polym Sci 131:40126 (1–9). https://doi.org/10.1002/app.40126

  131. Li Z, Ke Y, Hu Y (2004) Study on a new kind of polypropylene-graft-polystyrene: preparation and application. J Appl Polym Sci 93:314–322. https://doi.org/10.1002/app.20472

    Article  CAS  Google Scholar 

  132. Parameswaranpillai J, Joseph G, Jose S, Hameed N (2015) Phase morphology, thermomechanical, and crystallization behavior of uncompatibilized and PP-g-MAH compatibilized polypropylene/polystyrene blends. J Appl Polym Sci 132:42100 (1–11). https://doi.org/10.1002/app.42100

  133. Slouf M, Radonjic G, Hlavata D, Sikora A (2006) Compatibilized iPP/aPS blends: the effect of the viscosity ratio of the components on the blends morphology. J Appl Polym Sci 101:2236–2249. https://doi.org/10.1002/app.23571

    Article  CAS  Google Scholar 

  134. Syed Mustafa SJ, Azlan MRN, Fuad MYA et al (2001) Polypropylene/polystyrene blends-preliminary studies for compatibilization by aromatic-grafted polypropylene. J Appl Polym Sci 82:428–434. https://doi.org/10.1002/app.1868

    Article  Google Scholar 

  135. Mandal PK, Chakraborty D (2009) Studies on morphology, mechanical, thermal, and dynamic mechanical behavior of extrusion blended polypropylene and thermotropic liquid crystalline polymer in presence of compatibilizer. J Appl Polym Sci 111:2345–2352. https://doi.org/10.1002/app.28988

    Article  CAS  Google Scholar 

  136. Mandal PK, Siddhanta SK, Chakraborty D (2012) Engineering properties of compatibilized polypropylene/liquid crystalline polymer blends. J Appl Polym Sci 124:5279–5285. https://doi.org/10.1002/app.34277

    Article  CAS  Google Scholar 

  137. Farasoglou P, Kontou E, Spathis G et al (2000) Processing conditions and compatibilizing effects on reinforcement of polypropylene-liquid crystalline polymer blends. Polym Compos 21:84–95. https://doi.org/10.1002/pc.10167

    Article  CAS  Google Scholar 

  138. Lee YK, Lee JB, Park DH, Kim WN (2013) Effects of accelerated aging and compatibilizers on the mechanical and morphological properties of polypropylene and poly(acrylonitrile-butadiene-styrene) blends. J Appl Polym Sci 127:1032–1037. https://doi.org/10.1002/app.37504

    Article  CAS  Google Scholar 

  139. Deng Y, Mao X, Lin J, Chen Q (2015) Compatibilization of polypropylene/poly(acrylonitrile-butadiene-styrene) blends by polypropylene-graft-cardanol. J Appl Polym Sci 132:41315 (1–7). https://doi.org/10.1002/APP.41315

  140. Lee HS, Kim JD (2012) Effect of a hybrid compatibilizer on the mechanical properties and interfacial tension of a ternary blend with polypropylene, poly(lactic acid), and a toughening modifier. Polym Compos 33:1154–1161. https://doi.org/10.1002/pc.22244

    Article  CAS  Google Scholar 

  141. Dai S, Ye L (2008) Effect of novel compatibilizers on the properties and morphology of PP/PC blends. Polym Adv Technol 19:1069–1076. https://doi.org/10.1002/pat.1080

  142. Zhang J, Yao Y, Wang XL, Xu JH (2006) Polypropylene/polypropylene-grafted acrylic acid copolymer/ethylene-acrylic acid copolymer ternary blends for hydrophilic polypropylene. J Appl Polym Sci 101:436–442. https://doi.org/10.1002/app.23252

    Article  CAS  Google Scholar 

  143. Wang D, Ishida H (2006) The effect of addition of poly(propylene-g-acrylic acid) on the morphology of poly(vinyl methylether) and isotactic polypropylene blend. J Appl Polym Sci 101:4098–4103. https://doi.org/10.1002/app.23429

    Article  CAS  Google Scholar 

  144. Børve KL, Kotlar HK, Gustafson C-G (2000) Polypropylene-phenol formaldehyde-based compatibilizers. III. Application in PP/PBT and PP/PPE blends. J Appl Polym Sci 75:361–370. https://doi.org/10.1002/(SICI)1097-4628(20000118)75:3%3c361:AID-APP4%3e3.0.CO;2-A

    Article  Google Scholar 

  145. Sun QJ, Zhang BY, Yao DS et al (2009) Miscibility enhancement of PP/PBT blends with a side-chain liquid crystalline ionomer. J Appl Polym Sci 112:3007–3015. https://doi.org/10.1002/app.29874

    Article  CAS  Google Scholar 

  146. Nachtigall SMB, Felix AHO, Mauler RS (2003) Blend compatibilizers based on silane- and maleic anhydride-modified polyolefins. J Appl Polym Sci 88:2492–2498. https://doi.org/10.1002/app.12119

    Article  CAS  Google Scholar 

  147. Marco C, Collar EP, Areso S, García-Martínez JM (2002) Thermal studies on polypropylene/polyamide-6 blends modified by succinic anhydride and succinyl fluorescein grafted polypropylenes. J Polym Sci B: Polym Phys 40:1307–1315. https://doi.org/10.1002/polb.10188

    Article  CAS  Google Scholar 

  148. Franzheim O, Rische T, Stephan M, Macknight WJ (2000) Blending of immiscible polymers in a mixing zone of a twin screw extruder—effects of compatibilization. Polym Eng Sci 40:1143–1156. https://doi.org/10.1002/pen.11242

    Article  CAS  Google Scholar 

  149. Laredo E, Grimau M, Bello A et al (2005) The effect of compatibilization on the dynamic properties of polypropylene/nylon-6 blends studied by broad band dielectric spectroscopy. J Polym Sci B: Polym Phys 43:1408–1420. https://doi.org/10.1002/polb.20421

    Article  CAS  Google Scholar 

  150. Lu QW, Macosko CW, Horrion J (2005) Melt amination of polypropylenes. J Polym Sci A: Polym Chem 43:4217–4232. https://doi.org/10.1002/pola.20899

    Article  CAS  Google Scholar 

  151. Kim JS, Jang JH, Kim JH et al (2016) Morphological, thermal, rheological, and mechanical properties of PP/EVOH blends compatibilized with PP-g-IA. Polym Eng Sci 56:1240–1247. https://doi.org/10.1002/pen.24357

    Article  CAS  Google Scholar 

  152. Hung CJ, Chuang HY, Chang FC (2008) Novel reactive compatibilization strategy on immiscible polypropylene and polystyrene blend. J Appl Polym Sci 107:831–839. https://doi.org/10.1002/app.25201

    Article  CAS  Google Scholar 

  153. Kaya A, Pompe G, Schulze U et al (2002) The effect of TIBA on metallocene/MAO catalyzed synthesis of propylene oxazoline copolymers and their use in reactive blending. J Appl Polym Sci 86:2174–2181. https://doi.org/10.1002/app.11161

    Article  CAS  Google Scholar 

  154. Li H, Zhang XM, Zhu SY et al (2015) Preparation of polypropylene and polystyrene with -NCO and -NH2 functional groups and their applications in polypropylene/polystyrene blends. Polym Eng Sci 55:614–623. https://doi.org/10.1002/pen.23927

    Article  CAS  Google Scholar 

  155. Bohn CC, Manning SC, Moore RB (2001) Comparison of carboxylated and maleated polypropylene as reactive compatibilizers in polypropylene/polyamide-6,6 blends. J Appl Polym Sci 79:2398–2407. https://doi.org/10.1002/1097-4628(20010328)79:13%3c2398:AID-APP1047%3e3.0.CO;2-3

    Article  Google Scholar 

  156. Aranburu N, Eguiazabal JI (2013) Compatible blends of polypropylene with an amorphous polyamide. J Appl Polym Sci 127:5007–5013. https://doi.org/10.1002/app.38090

    Article  CAS  Google Scholar 

  157. Tortorella N, Beatty CL (2008) Morphology and mechanical properties of impact modified polypropylene blends. Polym Eng Sci 48:2098–2110. https://doi.org/10.1002/pen.21089

    Article  CAS  Google Scholar 

  158. Li J, Ma G, Sheng J (2010) Linear viscoelastic characteristics of in situ compatiblized binary polymer blends with viscoelastic properties of components variable. J Polym Sci, Part B: Polym Phys 48:1349–1362. https://doi.org/10.1002/polb.22034

    Article  CAS  Google Scholar 

  159. Abbasi F, Tavakoli A, Razavi Aghjeh MK (2018) Rheology, morphology, and mechanical properties of reactive compatibilized polypropylene/polystyrene blends via Friedel-Crafts alkylation reaction in the presence of clay. J Vinyl Addit Technol 24:18–26. https://doi.org/10.1002/vnl.21522

    Article  CAS  Google Scholar 

  160. Yousfi M, Livi S, Dumas A et al (2014) Compatibilization of polypropylene/polyamide 6 blends using new synthetic nanosized talc fillers: Morphology, thermal, and mechanical properties. J Appl Polym Sci 131:40453 (1–12). https://doi.org/10.1002/app.40453

  161. You F, Wang D, Li X et al (2014) Synthesis of polypropylene-grafted graphene and its compatibilization effect on polypropylene/polystyrene blends. J Appl Polym Sci 131:40455 (1–7). https://doi.org/10.1002/app.40455

  162. Lin T, Zhu L, Chen T, Guo B (2013) Optimization of mechanical performance of compatibilized polypropylene/poly(ethylene terephthalate) blends via selective dispersion of halloysite nanotubes in the blend. J Appl Polym Sci 129:47–56. https://doi.org/10.1002/app.38700

    Article  CAS  Google Scholar 

  163. Tucker JD, Lee S, Einsporn RL (2000) Study of the effect of PP-g-MA and SEBS-g-MA on the mechanical and morphological properties of polypropylene/nylon 6 blends. Polym Eng Sci 40:2577–2589. https://doi.org/10.1002/pen.11388

    Article  CAS  Google Scholar 

  164. Yu F, Zhang Z, Yu W et al (2012) Modeling of flow-induced crystallization in blends of isotactic polypropylene and poly(ethylene-co-octene). Polym Int 61:1389–1393. https://doi.org/10.1002/pi.4220

    Article  CAS  Google Scholar 

  165. Dai S, Ye L, Hu GH (2012) Molecular simulation on relationship between composition and microstructure of PP/PC blend. J Appl Polym Sci 126:1165–1173. https://doi.org/10.1002/app.36977

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Shyang Chow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chow, W.S. (2019). Polypropylene Blends: Properties Control by Design. In: Karger-Kocsis, J., Bárány, T. (eds) Polypropylene Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-12903-3_8

Download citation

Publish with us

Policies and ethics