Skip to main content

Some Classical Problems in Random Geometry

  • Chapter
  • First Online:
Stochastic Geometry

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2237))

Abstract

This chapter is intended as a first introduction to selected topics in random geometry. It aims at showing how classical questions from recreational mathematics can lead to the modern theory of a mathematical domain at the interface of probability and geometry. Indeed, in each of the four sections, the starting point is a historical practical problem from geometric probability. We show that the solution of the problem, if any, and the underlying discussion are the gateway to the very rich and active domain of integral and stochastic geometry, which we describe at a basic level. In particular, we explain how to connect Buffon’s needle problem to integral geometry, Bertrand’s paradox to random tessellations, Sylvester’s four-point problem to random polytopes and Jeffrey’s bicycle wheel problem to random coverings. The results and proofs selected here have been especially chosen for non-specialist readers. They do not require much prerequisite knowledge on stochastic geometry but nevertheless comprise many of the main results on these models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Ahlberg, V. Tassion, A. Teixeira, Existence of an unbounded vacant set for subcritical continuum percolation (2017). https://arxiv.org/abs/1706.03053

  2. K.S. Alexander, Finite clusters in high-density continuous percolation: compression and sphericality. Probab. Theory Relat. Fields 97, 35–63 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. R.V. Ambartzumian, A synopsis of combinatorial integral geometry. Adv. Math. 37, 1–15 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Avram, D. Bertsimas, On central limit theorems in geometrical probability. Ann. Appl. Probab. 3(4), 1033–1046 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Baccelli, S. Zuyev, Poisson-Voronoi spanning trees with applications to the optimization of communication networks. Oper. Res. 47, 619–631 (1999)

    Article  MATH  Google Scholar 

  6. J.-E. Barbier, Note sur Ie probleme de l’aiguille et Ie jeu du joint couvert. J. Math. Pures Appl. 5, 273–286 (1860)

    Google Scholar 

  7. I. Bárány, Random polytopes in smooth convex bodies. Mathematika 39, 81–92 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Bárány, Sylvester’s question: the probability that n points are in convex position. Ann. Probab. 27, 2020–2034 (1999)

    MathSciNet  MATH  Google Scholar 

  9. I. Bárány, A note on Sylvester’s four-point problem. Studia Sci. Math. Hungar. 38, 733–77 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Y.M. Baryshnikov, R.A. Vitale, Regular simplices and Gaussian samples. Discret. Comput. Geom. 11, 141–147 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Baumstark, G. Last, Gamma distributions for stationary Poisson flat processes. Adv. Appl. Probab. 41, 911–939 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Bertrand, Calcul des probabilités (Gauthier-Villars, Paris, 1889)

    MATH  Google Scholar 

  13. T. Biehl, Über Affine Geometrie XXXVIII, Über die Schüttlung von Eikörpern. Abh. Math. Semin. Hamburg Univ. 2, 69–70 (1923)

    Article  MATH  Google Scholar 

  14. H. Biermé, A. Estrade, Covering the whole space with Poisson random balls. ALEA Lat. Am. J. Probab. Math. Stat. 9, 213–229 (2012)

    MathSciNet  MATH  Google Scholar 

  15. W. Blaschke, Lösung des “Vierpunktproblems” von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten. Leipziger Berichte 69, 436–453 (1917)

    MATH  Google Scholar 

  16. W. Blaschke, Vorlesungen über Differentialgeometrie II: Affine Differentialgeometrie (Springer, Berlin, 1923)

    MATH  Google Scholar 

  17. W. Blaschke, Integralgeometrie 2: Zu Ergebnissen von M.W. Crofton. Bull. Math. Soc. Roum. Sci. 37, 3–11 (1935)

    Google Scholar 

  18. D. Bosq, G. Caristi, P. Deheuvels, A. Duma P. Gruber, D. Lo Bosco, V. Pipitone, Marius Stoka: Ricerca Scientifica dal 1951 al 2013, vol. III (Edizioni SGB, Messina, 2014)

    Google Scholar 

  19. C. Buchta, An identity relating moments of functionals of convex hulls. Discret. Comput. Geom. 33, 125–142 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. G.-L.L. Comte de Buffon, Histoire naturelle, générale et particulière, avec la description du cabinet du Roy. Tome Quatrième (Imprimerie Royale, Paris, 1777)

    Google Scholar 

  21. P. Bürgisser, F. Cucker, M. Lotz, Coverage processes on spheres and condition numbers for linear programming. Ann. Probab. 38, 570–604 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Calka, The distributions of the smallest disks conta ining the Poisson-Voronoi typical cell and the Crofton cell in the plane. Adv. Appl. Probab. 34, 702–717 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Calka, Tessellations, in New Perspectives in Stochastic Geometry, ed. by W.S. Kendall, I. Molchanov (Oxford University Press, Oxford, 2010), pp. 145–169

    Google Scholar 

  24. P. Calka, Asymptotic methods for random tessellations, in Stochastic Geometry, Spatial Statistics and Random Fields, ed. by E. Spodarev. Lecture Notes in Mathematics, vol. 2068 (Springer, Heidelberg, 2013), pp. 183–204

    Google Scholar 

  25. P. Calka, T. Schreiber, J.E. Yukich, Brownian limits, local limits and variance asymptotics for convex hulls in the ball. Ann. Probab. 41, 50–108 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Carathéodory, E. Study, Zwei Beweise des Satzes daß der Kreis unter allen Figuren gleichen Umfanges den größten Inhalt hat. Math. Ann. 68, 133–140 (1910)

    Article  MATH  Google Scholar 

  27. H. Carnal, Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten. Z. Wahrscheinlichkeit. und verw. Gebiete 15, 168–176 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Cauchy, Notes sur divers théorèmes relatifs à la rectification des courbes, et à la quadrature des surfaces. C. R. Acad. Sci. Paris 13, 1060–1063 (1841)

    Google Scholar 

  29. N. Chenavier, A general study of extremes of stationary tessellations with examples. Stochastic Process. Appl. 124, 2917–2953 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Davy, Projected thick sections through multi-dimensional particle aggregates. J. Appl. Probab. 13, 714–722 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  31. S.N. Chiu, D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and its Applications, 3rd edn. Wiley Series in Probability and Statistics (Wiley, Chichester, 2013)

    Google Scholar 

  32. R. Cowan, The use of ergodic theorems in random geometry. Adv. Appl. Probab. 10, 47–57 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. M.W. Crofton, On the theory of local probability, applied to straight lines drawn at random in a plane; the methods used being also extended to the proof of certain new theorems in the integral calculus. Philos. Trans. R. Soc. Lond. 156, 181–199 (1868)

    MATH  Google Scholar 

  34. D.J. Daley, Asymptotic properties of stationary point processes with generalized clusters. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 21, 65–76 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  35. D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes. Springer Series in Statistics (Springer, New York, 1988)

    Google Scholar 

  36. R. Descartes, Principia Philosophiae (Louis Elzevir, Amsterdam, 1644)

    Google Scholar 

  37. C. Domb, Covering by random intervals and one-dimensional continuum percolation. J. Stat. Phys. 55, 441–460 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Dvoretzky, On covering a circle by randomly placed arcs. Proc. Natl. Acad. Sci. U S A 42, 199–203 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  39. B. Efron, The convex hull of a random set of points. Biometrika 52, 331–343 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Flatto, D.J. Newman Random coverings. Acta Math. 138, 241–264 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Franken, D. König, U. Arndt, V. Schmidt, Queues and Point Processes (Akademie-Verlag, Berlin, 1981)

    MATH  Google Scholar 

  42. E.N. Gilbert, Random plane networks. J. Soc. Ind. Appl. Math. 9, 533–543 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Goldman, Sur une conjecture de D.G. Kendall concernant la cellule de Crofton du plan et sur sa contrepartie brownienne. Ann. Probab. 26, 1727–1750 (1998)

    Google Scholar 

  44. A. Goldman, The Palm measure and the Voronoi tessellation for the Ginibre process. Ann. Appl. Probab. 20, 90–128 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Goudsmit, Random distribution of lines in a plane. Rev. Mod. Phys. 17, 321–322 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  46. J.-B. Gouéré, Subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Probab. 36, 1209–1220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. J.-B. Gouéré, Subcritical regimes in some models of continuum percolation. Ann. Appl. Probab. 19, 1292–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. H. Groemer, On some mean values associated with a randomly selected simplex in a convex set. Pac. J. Math. 45, 525–533 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Hadwiger, Vorlesungen Über Inhalt, Oberfläche und Isoperimetrie (Springer, Berlin, 1957)

    Book  MATH  Google Scholar 

  50. P. Hall, On continuum percolation. Ann. Probab. 13, 1250–1266 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  51. P. Hall, Introduction to the Theory of Coverage Processes (Wiley, New York, 1988)

    MATH  Google Scholar 

  52. L. Heinrich, Large deviations of the empirical volume fraction for stationary Poisson grain models. Ann. Appl. Probab. 15, 392–420 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  53. L. Heinrich, L. Muche, Second-order properties of the point process of nodes in a stationary Voronoi tessellation. Math. Nachr. 281, 350–375 (2008). Erratum Math. Nachr. 283, 1674–1676 (2010)

    Google Scholar 

  54. L. Heinrich, H. Schmidt, V. Schmidt, Limit theorems for stationary tessellations with random inner cell structures. Adv. Appl. Probab. 37, 25–47 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  55. L. Heinrich, H. Schmidt, V. Schmidt, Central limit theorems for Poisson hyperplane tessellations. Ann. Appl. Probab. 16, 919–950 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  56. H.J. Hilhorst, Asymptotic statistics of the n-sided planar Poisson–Voronoi cell. I. Exact results. J. Stat. Mech. Theory Exp. 9, P09005 (2005)

    MathSciNet  Google Scholar 

  57. J. Hörrmann, D. Hug, M. Reitzner, C. Thäle, Poisson polyhedra in high dimensions. Adv. Math. 281, 1–39 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. D. Hug, Random polytopes, in Stochastic Geometry, Spatial Statistics and Random Fields, ed. by E. Spodarev. Lecture Notes in Mathematics, vol. 2068 (Springer, Heidelberg, 2013), pp. 205–238

    Google Scholar 

  59. D. Hug, G. Last, M. Schulte, Second order properties and central limit theorems for geometric functionals of Boolean models. Ann. Appl. Probab. 26, 73–135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. D. Hug, G. Last, W. Weil, Polynomial parallel volume, convexity and contact distributions of random sets. Probab. Theory Relat. Fields 135, 169–200 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  61. D. Hug, M. Reitzner, R. Schneider, The limit shape of the zero cell in a stationary Poisson hyperplane tessellation. Ann. Probab. 32, 1140–1167 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. D. Hug, R. Schneider, Asymptotic shapes of large cells in random tessellations. Geom. Funct. Anal. 17, 156–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. T. Huiller, Random covering of the circle: the size of the connected components. Adv. Appl. Probab. 35, 563–582 (2003)

    Article  MathSciNet  Google Scholar 

  64. A. Hunt, R. Ewing, B. Ghanbarian, Percolation theory for flow in porous media, 3rd edn. Lecture Notes in Physics, vol. 880 (Springer, Cham, 2014)

    Chapter  MATH  Google Scholar 

  65. S. Janson, Random coverings in several dimensions. Acta Math. 156, 83–118 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  66. E.T. Jaynes, The well-posed problem. Found. Phys. 3, 477–492 (1973)

    Article  MathSciNet  Google Scholar 

  67. D.G. Kendall, Foundations of a Theory of Random Sets. Stochastic Geometry (A Tribute to the Memory of Rollo Davidson) (Wiley, London, 1974), pp. 322–376

    Google Scholar 

  68. M.G. Kendall, P.A.P. Moran, Geometrical Probability (Charles Griffin, London, 1963)

    MATH  Google Scholar 

  69. J.F.C. Kingman, Random secants of a convex body. J. Appl. Probab. 6, 660–672 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  70. J.F.C. Kingman, Poisson Processes (Clarendon Press, Oxford, 1993)

    MATH  Google Scholar 

  71. D.A. Klain, G.-C. Rota, Introduction to Geometric Probability (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  72. A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Berlin, 1933)

    Book  MATH  Google Scholar 

  73. G. Last, M. Penrose, Lectures of the Poisson Process (Cambridge University Press, Cambridge, 2017)

    Book  MATH  Google Scholar 

  74. W. Lefebvre, T. Philippe, F. Vurpillot, Application of Delaunay tessellation for the characterization of solute-rich clusters in atom probe tomography. Ultramicroscopy 111, 200–206 (2011)

    Article  Google Scholar 

  75. J.-F. Marckert, The probability that n random points in a disk are in convex position. Braz. J. Probab. Stat. 31(2), 320–337 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  76. K.Z. Markov, C.I. Christov, On the problem of heat conduction for random dispersions of spheres allowed to overlap. Math. Models Methods Appl. Sci. 2, 249–269 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  77. B. Matérn, Spatial variation: Stochastic models and their application to some problems in forest surveys and other sampling investigations. Meddelanden Fran Statens Skogsforskningsinstitut, vol. 49, Stockholm (1960)

    Google Scholar 

  78. Matheron, G.: Random Sets and Integral Geometry. Wiley Series in Probability and Mathematical Statistics (Wiley, New York, 1975)

    Google Scholar 

  79. J. Mecke, Stationäre zufällige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9, 36–58 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  80. J. Mecke, On the relationship between the 0-cell and the typical cell of a stationary random tessellation. Pattern Recogn. 32, 1645–1648 (1999)

    Article  Google Scholar 

  81. R. Meesters, R. Roy, Continuum Percolation (Cambridge University Press, New York, 1996)

    Book  Google Scholar 

  82. J.L. Meijering, Interface area, edge length and number of vertices in crystal aggregates with random nucleation. Philips Res. Rep. 8, 270–90 (1953)

    MATH  Google Scholar 

  83. R.E. Miles, Random polygons determined by random lines in a plane I. Proc. Natl. Acad. Sci. U S A 52, 901–907 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  84. R.E. Miles, Random polygons determined by random lines in a plane II. Proc. Natl. Acad. Sci. U S A 52, 1157–1160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  85. R.E. Miles, The random division of space. Suppl. Adv. Appl. Probab. 4, 243–266 (1972)

    Article  MATH  Google Scholar 

  86. R.E. Miles, The various aggregates of random polygons determined by random lines in a plane. Adv. Math. 10, 256–290 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  87. R.E. Miles, Estimating aggregate and overall characteristics from thich sections by transmission microscopy. J. Microsc. 107, 227–233 (1976)

    Article  Google Scholar 

  88. J. Møller, Random tessellations in \({\mathbb R}^d\). Adv. Appl. Probab. 21, 37–73 (1989)

    Google Scholar 

  89. J. Møller, Random Johnson–Mehl tessellations. Adv. Appl. Probab. 24, 814–844 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  90. J. Møller, Lectures on Random Voronoi Tessellations. Lecture Notes in Statistics, vol. 87 (Springer, New York, 1994)

    Book  MATH  Google Scholar 

  91. A. Müller, D. Stoyan, Comparison Methods for Stochastic Models and Risks. Wiley Series in Probability and Statistics (Wiley, Chichester, 2002)

    Google Scholar 

  92. W. Nagel, V. Weiss, Crack STIT tessellations: characterization of stationary random tessellations stable with respect to iteration. Adv. Appl. Probab. 37, 859–883 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  93. J. Neveu, Processus ponctuels, in École d’été de Probabilités de Saint-Flour. Lecture Notes in Mathematics, vol. 598 (Springer, Berlin, 1977), pp. 249–445

    Chapter  MATH  Google Scholar 

  94. New Advances in Geostatistics. Papers from Session Three of the 1987 MGUS Conference held in Redwood City, California, April 13–15, 1987. Mathematical Geology, vol. 20 (Kluwer Academic/Plenum Publishers, Dordrecht, 1988), pp. 285–475

    Google Scholar 

  95. New Perspectives in Stochastic Geometry, ed. by W.S. Kendall, I. Molchanov (Oxford University Press, Oxford, 2010)

    Google Scholar 

  96. C. Palm, Intensitätsschwankungen im Fernsprechverkehr. Ericsson Technics 44, 1–189 (1943)

    Google Scholar 

  97. M. Penrose, On a continuum percolation model. Adv. Appl. Probab. 23, 536–556 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  98. M. Penrose, Non-triviality of the vacancy phase transition for the Boolean model (2017). https://arxiv.org/abs/1706.02197

  99. R.E. Pfiefer, The historical development of J. J. Sylvester’s four point problem. Math. Mag. 62, 309–317 (1989)

    MathSciNet  MATH  Google Scholar 

  100. H. Poincaré, Calcul des probabilités (Gauthier-Villars, Paris, 1912)

    MATH  Google Scholar 

  101. J. Quintanilla, S. Torquato, Clustering in a continuum percolation model. Adv. Appl. Probab. 29, 327–336 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  102. C. Redenbach, On the dilated facets of a Poisson-Voronoi tessellation. Image Anal. Stereol. 30, 31–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  103. M. Reitzner, Stochastical approximation of smooth convex bodies. Mathematika 51, 11–29 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  104. M. Reitzner, Central limit theorems for random polytopes. Probab. Theory Relat. Fields 133, 483–507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  105. M. Reitzner, The combinatorial structure of random polytopes. Adv. Math. 191, 178–208 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  106. M. Reitzner, Random polytopes, in New Perspectives in Stochastic Geometry, ed. by W.S. Kendall, I. Molchanov (Oxford University Press, Oxford, 2010), pp. 45–76

    Google Scholar 

  107. A. Rényi, R. Sulanke, Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitsth. verw. Geb. 2, 75–84 (1963)

    Article  MATH  Google Scholar 

  108. A. Rényi, R. Sulanke, Über die konvexe Hülle von n zufällig gewählten Punkten. II. Z. Wahrscheinlichkeitsth. verw. Geb. 3, 138–147 (1964)

    Article  MATH  Google Scholar 

  109. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory (Cambridge University Press, Cambridge, 1993)

    Book  MATH  Google Scholar 

  110. L.A. Santaló, Integral Geometry and Geometric Probability. Encyclopedia of Mathematics and its Applications, vol. 1 (Addison-Wesley, Reading, 1976)

    Google Scholar 

  111. R. Schneider, Random hyperplanes meeting a convex body. Z. Wahrsch. Verw. Gebiete 61, 379–387 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  112. R. Schneider, Integral geometric tools for stochastic geometry, in Stochastic Geometry, ed. by W. Weil. Lectures Given at the C.I.M.E. Summer School held in Martina Franca. Lecture Notes in Mathematics, vol. 1892 (Springer, Berlin, 2007), pp. 119–184

    Google Scholar 

  113. R. Schneider, W. Weil, Stochastic and Integral Geometry (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  114. R. Schneider, J.A. Wieacker, Random polytopes in a convex body. Z. Wahrsch. Verw. Gebiete 52, 69–73 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  115. J. Serra, Image Analysis and Mathematical Morphology (Academic, London, 1984)

    Google Scholar 

  116. L.A. Shepp, Covering the circle with random arcs. Isr. J. Math. 11, 328–345 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  117. A.F. Siegel, Random space filling and moments of coverage in geometrical probability. J. Appl. Probab. 15, 340–355 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  118. A.F. Siegel, L. Holst, Covering the circle with random arcs of random sizes. J. Appl. Probab. 19, 373–381 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  119. H. Solomon, Geometric Probability. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 28 (SIAM, Philadelphia, 1978)

    Google Scholar 

  120. J. Steiner, Über parallele Flächen. Monatsber. Preuss. Akad. Wiss., Berlin (1840), pp. 114–118

    Google Scholar 

  121. W.L. Stevens, Solution to a geometrical problem in probability. Ann. Eugenics 9, 315–320 (1939)

    Article  MathSciNet  Google Scholar 

  122. D. Stoyan, Applied stochastic geometry: a survey. Biometrical J. 21, 693–715 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  123. J.J. Sylvester, Problem 1491. The Educational Times, London (April, 1864)

    Google Scholar 

  124. P. Valtr, Probability that n random points are in convex position. Discret. Comput. Geom. 13, 637–643 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  125. P. Valtr, The probability that n random points in a triangle are in convex position. Combinatorica 16, 567–573 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  126. V.H. Vu, Sharp concentration of random polytopes. Geom. Funct. Anal. 15, 1284–1318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  127. W. Weil, Point processes of cylinders, particles and flats. Acta Appl. Math. 9, 103–136 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  128. V. Weiss, R. Cowan, Topological relationships in spatial tessellations. Adv. Appl. Probab. 43, 963–984 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  129. J.G. Wendel, A problem in geometric probability. Math. Scand. 11, 109–111 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  130. W.A. Whitworth, Choice and Chance (D. Bell, Cambridge, 1870)

    MATH  Google Scholar 

  131. F. Willot, D. Jeulin, Elastic behavior of composites containing Boolean random sets of inhomogeneities. Int. J. Eng. Sci. 47, 313–324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author warmly thanks two anonymous referees for their careful reading of the original manuscript, resulting in an improved and more accurate exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Calka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calka, P. (2019). Some Classical Problems in Random Geometry. In: Coupier, D. (eds) Stochastic Geometry. Lecture Notes in Mathematics, vol 2237. Springer, Cham. https://doi.org/10.1007/978-3-030-13547-8_1

Download citation

Publish with us

Policies and ethics