Skip to main content

Tetrapod Teeth: Diversity, Evolution, and Function

  • Chapter
  • First Online:
Feeding in Vertebrates

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Teeth provide an excellent model system for understanding evolutionary change and how it has led to adaptive diversity across tetrapods. Their durability over geological timescales and their ubiquity in the fossil record make teeth unique and allow direct comparison of dental structure for both extant and extinct species. We can detail diversity of size, shape, and structure, past and present, and in doing so explore what nature can accomplish with a little embryonic tissue and some signaling proteins—common and novel solutions to the problems of food acquisition and processing. Teeth are especially important for understanding the process of evolution because of their central role in ecology; eater to eaten is the most fundamental relationship between living organisms. Teeth mediate this relationship, and so are the front line in nature’s “struggle for existence.” This chapter presents a survey of dental form and function in both stem- and crown-tetrapods. Each of the major groups—Amphibia, Reptilia, and Mammalia and their stem-groups—is considered separately. We begin with a general discussion of how teeth work, focusing on their roles in food acquisition and processing. We then review distinctive dental forms for extinct and extant taxa, group by group, to give the reader a sense of the extraordinary range of adaptive solutions among the tetrapods to the challenges associated with food acquisition and processing. Our survey culminates with an overview of the origin, evolution, and adaptive radiation of the mammalian masticatory system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abler WL (1992) The serrated teeth of tyrannosaurid dinosaurs, and biting structures in other animals. Paleobiology 18(2):161–183

    Google Scholar 

  • Abramyan J, Richman JM (2015) Recent insights into the morphological diversity in the amniote primary and secondary palates. Dev Dynam 244(12):1457–1468. https://doi.org/10.1002/dvdy.24338

    PubMed  PubMed Central  Google Scholar 

  • Adam PJ (2005) Lobodon carcinophaga. Mamm Species 772:1–14

    Google Scholar 

  • Aimi M, Inagaki H (1988) Grooved lower incisors in flying lemurs. J Mamm 69(1):138–140

    Google Scholar 

  • Allin EF (1975) Evolution of the mammalian middle ear. J Morph 147(4):403–438

    CAS  PubMed  Google Scholar 

  • Anderson PK (2002) Habitat, niche, and evolution of sirenian mating systems. J Mamm Evol 9(1):55–98. https://doi.org/10.1023/A:1021383827946

    Article  Google Scholar 

  • Anthwal N, Joshi L, Tucker AS (2013) Evolution of the mammalian middle ear and jaw: adaptations and novel structures. J Anat 222(1):147–160. https://doi.org/10.1111/j.1469-7580.2012.01526.x

    Article  PubMed  Google Scholar 

  • Archer D, Sanson G (2002) Form and function of the selenodont molar in southern African ruminants in relation to their feeding habits. J Zool (Lond) 257(1):13–26. https://doi.org/10.1017/S0952836902000614

    Article  Google Scholar 

  • Archer M (1984) The Australian marsupial radiation. In: Archer M, Clayton G (eds) Vertebrate zoogeography and evolution in Australia. Hesperian Press, Carlisle, pp 633–708

    Google Scholar 

  • Archer M, Flannery TF, Ritchie A, Molnar RE (1985) First mesozoic mammal from Australia: an Early Cretaceous monotreme. Nature 318(6044):363–366

    Google Scholar 

  • Archer M, Hand SJ, Godthelp H (1991) Australia’s lost world: prehistoric animals of Riversleigh. Indiana University Press, Bloomington, IN

    Google Scholar 

  • Argot C (2004) Evolution of South American mammalian predators (Borhyaenoidea): anatomical and palaeobiological implications. Zool J Linn Soc 140(4):487–521. https://doi.org/10.1111/j.1096-3642.2004.00110.x

    Article  Google Scholar 

  • Asher RJ, Sánchez-Villagra MR (2005) Locking yourself out: diversity among dentally zalambdodont therian mammals. J Mamm Evol 12(1–2):265–282. https://doi.org/10.1007/s10914-005-5725-3

    Article  Google Scholar 

  • Barghusen HR (1968) The lower jaw of cynodonts (Reptilia, Therapsida) and the evolutionary origin of mammal-like adductor jaw musculature. Postilla 116:1–49

    Google Scholar 

  • Barghusen HR (1973) The adductor jaw musculature of Dimetrodon (Reptilia, Pelycosauria). J Paleontol 47(5):823–834

    Google Scholar 

  • Barlow JC (1984) Xenarthrans and pholidotes. In: Anderson S, Jones JK (eds) Orders and families of recent mammals of the world. John Wiley and Sons, New York, pp 219–239

    Google Scholar 

  • Barrett PM (2000) Prosauropod dinosaurs and iguanas: speculations on the diets of extinct reptiles. In: Sues H-D (ed) Evolution of herbivory in terrestrial vertebrates. Cambridge University Press, Cambridge, UK, pp 42–78

    Google Scholar 

  • Benton MJ (1984) Tooth form, growth, and function in Triassic rhynchosaurs (Reptilia, Diapsida). Palaeontology 27(4):737–776

    Google Scholar 

  • Berkovitz BK (2000) Tooth replacement patterns in non-mammalian vertebrates. In: Teaford MF, Smith MM, Ferguson MWJ (eds) Development, function and evolution of teeth. Cambridge University Press, Cambridge, UK, pp 186–200

    Google Scholar 

  • Berkovitz BK, Shellis P (2017) The teeth of non-mammalian vertebrates. Academic Press, London

    Google Scholar 

  • Bock WJ, Wahlert Gv (1965) Adaptation and the form-function complex. Evolution 19(3):269–299

    Google Scholar 

  • Bogert CM (1943) Dentitional phenomena in cobras and other elapids with notes on adaptive modification of fangs. Bull Amer Mus Nat Hist 81(3):285–360

    Google Scholar 

  • Broili F, Schröder J (1934) Zur Osteologie des Kopfes von Cynognathus. Sitzungsber Bayer Akad Wiss Math -Nat Abt 1934:95–128

    Google Scholar 

  • Bryden MM (1972) Growth and development of marine mammals. In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 1. Academic Press, New York, pp 1–79

    Google Scholar 

  • Buchtová M, Stembírek J, Glocová K, Matalová E, Tucker AS (2012) Early regression of the dental lamina underlies the development of diphyodont dentitions. J Dent Res 91(5):491–498. https://doi.org/10.1177/0022034512442896

    PubMed  Google Scholar 

  • Buffetaut E, Dauphin Y, Jaeger J-J, Martin M, Mazin JM, Tong H (1986) Prismatic dental enamel in theropod dinosaurs. Naturwissenschaften 73(6):326–327. https://doi.org/10.1007/Bf00451481

    Article  CAS  PubMed  Google Scholar 

  • Busbey AB (1995) The structural consequences of skull flattening in crocodilians. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, UK, pp 173–192

    Google Scholar 

  • Butler PM (1941) A theory of the evolution of mammalian molar teeth. Am J Sci 239(6):421–450

    Google Scholar 

  • Butler PM (1946) The evolution of carnassial dentitions in the Mammalia. Proc Zool Soc Lond 116(2):198–220

    Google Scholar 

  • Butler PM (1972) Some functional aspects of molar evolution. Evolution 26(3):474–483

    CAS  PubMed  Google Scholar 

  • Butler PM (1978) Molar cusp nomenclature and homology. In: Butler PM, Joysey KA (eds) Development, function and evolution of teeth. Academic Press, New York, pp 439–453

    Google Scholar 

  • Butler PM (1983) Evolution and mammalian dental morphology. J Biol Buccale 11(4):285–302

    CAS  PubMed  Google Scholar 

  • Butler PM (1980) The tupaiid dentition. In: Luckett WP (ed) Comparative biology and evolutionary relationships of tree shrews. Plenum Press, New York, pp 171–204

    Google Scholar 

  • Bystrov AP, Efremov IA (1940) Benthosuchus sushkini Efr.—a labyrinthodont from the Eotriassic of Sharjenga River. Trudy Paleont Inst. Akad Nauk SSSR 10(1):1–152

    Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. W.H. Freeman, New York

    Google Scholar 

  • Carroll RL, Bossy KA, Milner AC, Andrews SM, Wellstead CF (1998) Lepospondyli: Microsauria, Nectridea, Lysorophia, Adelospondyli, Aistopoda, Acherontiscidae. In: Wellnhofer P (ed) Handbuch der Paläoherpetologie part 1. Verlag Dr, Friedrich Pfeil, Munich, pp 1–216

    Google Scholar 

  • Clark JM, Jacobs LL, Downs WR (1989) Mammal-like dentition in a Mesozoic crocodylian. Science 244(4908):1064–1066. https://doi.org/10.1126/science.244.4908.1064

    Article  CAS  PubMed  Google Scholar 

  • Chow M, Wang B (1979) Relationships between pantodonts and tillodonts and classification of the order Pantodonta. Vert PalAs 17(1):37–48

    Google Scholar 

  • Clementz MT, Hoppe KA, Koch PL (2003) A paleoecological paradox: the habitat and dietary preferences of the extinct tethythere Desmostylus, inferred from stable isotope analysis. Paleobiology 29(4):506–519. https://doi.org/10.1666/0094-8373(2003)029%3c0506:apptha%3e2.0.co;2

    Google Scholar 

  • Cooper JS, Poole DFG (1973) The dentition and dental tissues of the agamid lizard. Uromastyx. J Zool (Lond) 169(1):85–100

    Google Scholar 

  • Cooper JS, Poole DFG, Lawson R (1970) The dentition of agamid lizards with special reference to tooth replacement. J Zool (Lond) 162(1):85–98

    Google Scholar 

  • Cope ED (1883) On the trituberculate type of molar tooth in the Mammalia. Proc Amer Phil Soc 21(114):324–326

    Google Scholar 

  • Court N (1992) A unique form of dental bilophodonty and a functional interpretation of peculiarities in the masticatory system of Arsinoitherium (Mammalia, Embrithopoda). Hist Biol 6(2):91–111. https://doi.org/10.1080/10292389209380421

    Article  Google Scholar 

  • Crompton AW (1963) On the lower jaw of Diarthrognathus and the evolution of the mammalian lower jaw. Proc Zool Soc Lond 140(4):697–753

    Google Scholar 

  • Crompton AW (1971) The origin of the tribosphenic molar. Zool J Linn Soc 50(Suppl 1):65–87

    Google Scholar 

  • Crompton AW (1972) Postcanine occlusion in cynodonts and tritylodontids. Bull Brit Mus (Nat Hist) Geol 21:27–71

    Google Scholar 

  • Crompton AW (1995) Masticatory function in nonmammalian cynodonts and early mammals. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge, UK, pp 55–75

    Google Scholar 

  • Crompton AW, Hiiemae K (1969) Functional occlusion in tribosphenic molars. Nature 222(5194):678–679

    CAS  PubMed  Google Scholar 

  • Crompton AW, Hiiemae K (1970) Molar occlusion and mandibluar movements during occlusion in the American opossum, Didelphis marsupialis. Zool J Linn Soc 49(1):21–47

    Google Scholar 

  • Crompton AW, Hylander WL (1986) Changes in mandibular function following the acquisition of a dentary-squamosal joint. In: Hotton NIII, MacLean PD, Roth JJ, Roth EC (eds) The ecology and biology of mammal-like reptiles. Smithsonian Institution Press, Washington, DC, pp 263–282

    Google Scholar 

  • Crompton AW, Jenkins FA Jr (1968) Molar occlusion in late Triassic mammals. Biol Rev 43(4):427–458

    CAS  PubMed  Google Scholar 

  • Crompton AW, Luo Z-X (1993) Relationships of the Liassic mammals Sinoconodon, Morganucodon oehleri, and Dinnetherium. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: Mesozoic differentiation, multituberculates, monotremes, early therians and marsupials. Springer-Verlag, New York, pp 30–44

    Google Scholar 

  • Crompton AW, Wood CB, Stern DN (1994) Differential wear of enamel: a mechanism for maintaining sharp cutting edges. In: Bels VL, Chardon M, Vandewalle P (eds) Advances in comparative and environmental physiology, vol 18. Biomechanics of feeding in vertebrates. Springer-Verlag, New York, pp 321–346

    Google Scholar 

  • Cuvier G (1815) Essay on the theory of the earth, 2nd edn. R. Jameson trans. William Blackwood, John Murray and Robert Baldwin, London

    Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London

    Google Scholar 

  • Davis BM (2012) Micro-computed tomography reveals a diversity of peramuran mammals from the Purbeck Group (Berriasian) of England. Palaeontology 55(4):789–817. https://doi.org/10.1111/j.1475-4983.2012.01161.x

    Article  Google Scholar 

  • Davit-Béal T, Chisaka H, Delgado S, Sire J-Y (2007) Amphibian teeth: current knowledge, unanswered questions, and some directions for future research. Biol Rev 82(1):49–81. https://doi.org/10.1111/j.1496-185X.2006.00003.x

    Article  PubMed  Google Scholar 

  • de Muizon C, Lange-Badré B (1997) Carnivorous dental adaptations in tribosphenic mammals and phylogenetic reconstruction. Lethaia 30(4):353–366. https://doi.org/10.1111/j.1502-3931.1997.tb00481.x

    Article  Google Scholar 

  • de Queiroz K (1987) Phylogenetic systematics of iguanine lizards: a comparative osteological study. Univ Cal Publ Zoology 118:1–203

    Google Scholar 

  • Domning DP (2001) Evolution of the Sirenia and Desmostylia. In: Mazin J-M, de Buffrénil V (eds) Secondary adaptation of tetrapods to life in water. In: Proceedings of the international meeting, Poitiers 1996. Verlag Dr. Friedrich Pfeil, Munich, pp 151–168

    Google Scholar 

  • Druzinsky RE (1995) Incisal biting in the mountain beaver (Aplodontia rufa) and woodchuck (Marmota monax). J Morphol 226(1):79–101. https://doi.org/10.1002/jmor.1052260106

    Article  CAS  PubMed  Google Scholar 

  • Dumont ER, Strait SG, Friscia AR (2000) Abderitid marsupials from the Miocene of Patagonia: an assessment of form, function, and evolution. J Paleontol 74(6):1161–1172. https://doi.org/10.1017/S0022336000017686

    Article  Google Scholar 

  • Edmund AG (1969) Dentition. In: Gans C, Bellairs Ad’A, Parsons TS (eds) Biology of the Reptilia, volume 1: morphology A. Academic Press, London and New York, pp 117–200

    Google Scholar 

  • Ellermann JR (1966) The families and genera of living rodents. Trustees of the British Museum, London

    Google Scholar 

  • Erickson GM, Sidebottom MA, Kay DI, Turner KT, Ip N, Norell MA, Sawyer WG, Krick BA (2015) Wear biomechanics in the slicing dentition of the giant horned dinosaur Triceratops. Sci Adv 1:e150005. https://doi.org/10.1126/sciadv.1500055

    Article  Google Scholar 

  • Estes R, Williams EE (1984) Ontogenetic variation in the molariform teeth of lizards. J Vert Paleont 4(1):96–107

    Google Scholar 

  • Evans AR (2005) Connecting morphology, function and tooth wear in microchiropterans. Biol J Linn Soc 85(1):81–96. https://doi.org/10.1111/j.1095-8312.2005.00474.x

    Article  Google Scholar 

  • Evans AR, Sanson GD (2006) Spatial and functional modeling of carnivore and insectivore molariform teeth. J Morphol 267(6):649–662. https://doi.org/10.1002/jmor.10285

    Article  PubMed  Google Scholar 

  • Fay FH (1985) Odobenus rosmarus. Mamm Species 238:1–7

    Google Scholar 

  • Flynn JJ, Parrish JM, Rakotosamimanana B, Simpson WF, Wyss AR (1999) A Middle Jurassic mammal from Madagascar. Nature 401(6748):57–60

    CAS  Google Scholar 

  • Flynn JJ, Wesley-Hunt GD (2005) Carnivora. In: Rose KD, Archibald JD (eds) The rise of placental mammals: origins and relationships of the major extant clades. The Johns Hopkins University Press, Baltimore, MD, pp 175–198

    Google Scholar 

  • Folinsbee KE, Müller J, Reisz RR (2007) Canine grooves: morphology, function, and relevance to venom. J Vert Paleont 27(2):547–551

    Google Scholar 

  • Franzen JL, Wilde V (2003) First gut content of a fossil primate. J Human Evol 44:373–378

    Google Scholar 

  • Gaudin TJ (2004) Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zool J Linn Soc Lond 140(2):255–305. https://doi.org/10.1111/j.1096-3642.2003.00100.x

    Article  Google Scholar 

  • Gee H (1992) By their teeth ye shall know them. Nature 360(6404):529–529

    Google Scholar 

  • Gheerbrant E, Domning DP, Tassy P (2005) Paenungulata (Sirenia, Proboscidea, Hyracoidea, and relatives). In: Rose KD, Archibald JD (eds) The rise of placental mammals: origins and relationships of the major extant clades. The Johns Hopkins University Press, Baltimore, MD, pp 84–105

    Google Scholar 

  • Giebel CG (1855) Odontographie. Vergleichende Darstellung des Zahnsystemes der lebenden und fossilen Wirbelthiere. Verlag von Ambrosius Abel, Leipzig

    Google Scholar 

  • Gill PG, Purnell MA, Crumpton N, Brown KR, Gostling NJ, Stampanoni M, Rayfield EJ (2014) Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512(7514):303–305. https://doi.org/10.1038/nature13622

    Article  CAS  PubMed  Google Scholar 

  • Gow CE (1978) The advent of herbivory in certain reptilian lineages during the Triassic. Palaeont Afr 21:133–141

    Google Scholar 

  • Gow CE (1980) The dentitions of the Tritheledontidae (Therapsida, Cynodontia). Proc R Soc Lond B 208(1173):461–481

    CAS  PubMed  Google Scholar 

  • Gow CE (1985) Apomorphies of the Mammalia. S Afr J Sci 81(9):558–560

    Google Scholar 

  • Gregory AL, Sears BR, Wooten JA, Camp CD, Falk A, O’Quin K, Pauley TK (2016) Evolution of dentition in salamanders: relative roles of phylogeny and diet. Biol J Linn Soc 119(4):960–973. https://doi.org/10.1111/bij.12831

    Article  Google Scholar 

  • Grine FE, Vrba ES (1980) Prismatic enamel: a pre-adaptation for mammalian diphyodonty? S Afr J Sci 76(3):139–141

    Google Scholar 

  • Grine FE, Vrba ES, Cruickshank ARI (1979) Enamel prisms and diphyodonty: linked apomorphies of Mammalia. S Afr J Sci 75(3):114–120

    Google Scholar 

  • Gurovich Y, Beck R (2009) The phylogenetic affinities of the enigmatic mammalian clade Gondwanatheria. J Mamm Evol 16(1):25–49. https://doi.org/10.1007/s10914-008-9097-3

    Article  Google Scholar 

  • Habersetzer J, Richter G, Storch G (1994) Paleoecology of early Middle Eocene bats from Messel, FRG. Aspects of flight, feeding and echolocation. Hist Biol 8(1–4):235–260

    Google Scholar 

  • Hendrickx C, Mateus O (2014) Abelisauridae (Dinosauria: Theropoda) from the Late Jurassic of Portugal and dentition-based phylogeny as a contribution for the identification of isolated theropod teeth. Zootaxa 3759(1):1–74. https://doi.org/10.11646/zootaxa.3759.1.1

    Article  PubMed  Google Scholar 

  • Hershkovitz P (1971) Basic crown patterns and cusp homologies of mammalian teeth. In: Dahlberg AA (ed) Dental morphology and evolution. The University of Chicago Press, Chicago, pp 95–150

    Google Scholar 

  • Hiiemae KM (1967) Masticatory function in mammals. J Dental Res 46(5):883–893

    CAS  Google Scholar 

  • Hillson S (2005) Teeth. 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Holden C (2005) What’s in a tooth? Science 310(5756):1900

    Google Scholar 

  • Hongo A, Akimoto M (2003) The role of incisors in selective grazing by cattle and horses. J Agricult Sci 140(4):469–477. https://doi.org/10.1017/S0021859603003083

    Article  Google Scholar 

  • Hopson JA (1971) Postcanine replacement in the gomphodont cynodont Diademodon. Zool J Linn Soc 50(Suppl):1–21

    Google Scholar 

  • Hume ID, Jarman PJ, Renfree MB, Temple-Smith PD (1989) Macropodidae. In: Walton DW, Richardson BJ (eds) Fauna of Australia, vol 1B. Mammalia. Australian Government Publishing Service, Canberra, ACT, pp 679–715

    Google Scholar 

  • Hunter JP, Jernvall J (1995) The hypocone as a key innovation in mammalian evolution. Proc Natl Acad Sci USA 92(23):10718–10722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Husar SL (1978) Trichechus manatus. Mammalian Species 93:1–5

    Google Scholar 

  • Jablonski D (2005) Mass extinctions and macroevolution. Paleobiology 31(2):192–210. https://doi.org/10.1666/0094-8373(2005)031%5b0192:meam%5d2.0.co;2

    Google Scholar 

  • Janis CM (1990) Correlation of cranial and dental variables with dietary preferences in mammals: a comparison of macropodids and ungulates. Mem Queensland Mus 28(1):349–366

    Google Scholar 

  • Janis CM, Archibald JD, Cifelli RL, Lucas SG, Schaff CR, Schoch RM, Williamson TE (1998) Archaic ungulates and ungulatelike mammals. In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of Tertiary mammals of North America. Terrestrial carnivores, ungulates, and ungulate-like mammals. Cambridge University Press, Cambridge, UK, pp 247–259

    Google Scholar 

  • Jenkins PD, Kilpatrick CW, Robinson MF, Timmins RJ (2004) Morphological and molecular investigations of a new family, genus and species of rodent (Mammalia: Rodentia: Hystricognatha) from Lao PDR. Syst Biodivers 2:419–454. https://doi.org/10.1017/S1477200004001549

    Article  Google Scholar 

  • Jones C (1984) Tubulidentates, proboscideans and hyracoids. In: Anderson S, Jones JK (eds) Orders and families of recent mammals of the world. Wiley, New York, pp 523–535

    Google Scholar 

  • Kearney M, Rieppel O (2006) An investigation into the occurrence of plicidentine in the teeth of squamate reptiles. Copeia 2006(3):337–350. https://doi.org/10.1643/0045-8511(2006)2006%5b337:aiitoo%5d2.0.co;2

    Google Scholar 

  • Kemp TS (2005) The origin and evolution of mammals. Oxford University Press, Oxford

    Google Scholar 

  • Kielan-Jaworowska Z (1974) Multituberculate succession in the Late Cretaceous of the Gobi Desert (Mongolia). Palaeont Pol 30:23–44

    Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the age of dinosaurs: origins, evolution and structure. Columbia University Press, New York

    Google Scholar 

  • Kielan-Jaworowska Z, Crompton AW, Jenkins FA Jr (1987) The origin of egg-laying mammals. Nature 326(6116):871–873

    Google Scholar 

  • King GM (1988) Anomodontia. In: Wellnhofer P (ed) Handbuch der Paläoherpetologie part 17C. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • King GM, Oelofsen BW, Rubidge RS (1989) The evolution of the dicynodont feeding system. Zool J Linn Soc 113(2):165–223

    Google Scholar 

  • Koford CB (1957) The Vicuña and the Puna. Ecol Monogr 27(2):153–219. https://doi.org/10.2307/1948574

    Article  Google Scholar 

  • Krause DW (1982) Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus. Paleobiology 8:265–281

    Google Scholar 

  • Krause DW (2014) Dental morphology of Vintana sertichi (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar. J Vert Paleontol 14(S1):137–165. https://doi.org/10.1080/02724634.2014.976129

    Article  Google Scholar 

  • LeBlanc ARH, Reisz RR (2013) Periodontal ligaments, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance. PLoS One 8(9):e74697. https://doi.org/10.1371/journal.pone.0074697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeBlanc ARH, Reisz RR (2015) Patterns of tooth development and replacement in captorhinid reptiles: a comparative approach for understanding the origin of multiple tooth rows. J Vert Paleontol 35(3):e919928. https://doi.org/10.1080/02724634.2014.919928

    Article  Google Scholar 

  • LeBlanc ARH, Reisz RR, Evans DC, Bailleul AM (2016) Ontogeny reveals function and evolution of the hadrosaurid dinosaur dental battery. BMC Evol Biol 16:152. https://doi.org/10.1186/s12862-016-0721-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Lessertisseur J, Sigogneau D (1965) Sur l’acquisition des principales caracteristiques du squelette des mammifères. Mammalia 29(1):95–168

    Google Scholar 

  • Li JT, Johnson CA, Smith AA, Hunter DJ, Singh G, Brunski JB, Helms JA (2016) Linking suckling biomechanics to the development of the palate. Sci Rep 6:20419. ARTN 20419. https://doi.org/10.1038/srep20419

  • Lillegraven JA (1974) Biogeographical considerations of the marsupial-placental dichotomy. Annu Rev Ecol Syst 5:263–283

    Google Scholar 

  • Long J, Archer M, Flannery T, Hand S (2002) Prehistoric mammals of Australia and New Guinea: one hundred million years of evolution. The Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Lopatin AV, Averianov AO (2006) An aegialodontid upper molar and the evolution of mammal dentition. Science 313(5790):1092. https://doi.org/10.1126/science.1128530

    Article  CAS  PubMed  Google Scholar 

  • Louchart A, Viriot L (2011) From snout to beak: the loss of teeth in birds. Trends Ecol Evol 26(12):664–673. https://doi.org/10.1016/j.tree.2011.09.004

    Article  Google Scholar 

  • Lucas PW (2004) Dental functional morphology: how teeth work. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Luckett WP, Wooley PA (1996) Ontogeny and homology of the dentition in dasyurid marsupials: development in Sminthopsis virginiae. J Mamm Evol 3(4):327–364. https://doi.org/10.1007/BF02077449

    Article  Google Scholar 

  • Luo Z-X, Ji Q, Wible JR, Yuan C-X (2003) An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302(5652):1934–1940. https://doi.org/10.1126/science.1090718

    Article  CAS  PubMed  Google Scholar 

  • Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2004) Evolution of dental replacement in mammals. Bull Carnegie Mus Nat Hist 36(1):159–175

    Google Scholar 

  • Luo Z-X (2011) Developmental patterns in Mesozoic evolution of mammal ears. Annu Rev Ecol Evol Syst 42:355–380. https://doi.org/10.1146/annurev-ecolsys-032511-142302

    Article  Google Scholar 

  • Luo Z-X, Gatesy SM, Jenkins FA Jr, Amaral WW, Shubin NH (2015) Mandibular and dental characteristics of Late Triassic mammaliaform Haramiyavia and their ramifications for basal mammal evolution. Proc Natl Acad Sci USA 112(51):E7101–E7109. https://doi.org/10.1073/pnas.1519387112

  • Luo Z-X, Ji Q, Yuan C-X (2007) Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450(7166):93–97. https://doi.org/10.1038/nature06221

    Article  CAS  PubMed  Google Scholar 

  • Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47(1):1–78

    Google Scholar 

  • Luo Z-X, Yuan C-X, Meng Q-J, Ji Q (2011) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476(7361):442–445. https://doi.org/10.1038/nature10291

    Article  CAS  PubMed  Google Scholar 

  • Maas MC, Dumont ER (1999) Built to last: the structure, function, and evolution of primate dental enamel. Evol Anthropol 8(4):133–152. https://doi.org/10.1002/(sici)1520-6505(1999)8:4%3c133::aid-evan4%3e3.0.co;2-f

    Google Scholar 

  • Macdonald DW, Kays RW (2005) Carnivores of the world: an introduction. In: Nowak RM (ed) Walker’s carnivores of the world. The Johns Hopkins Unversity Press, Baltimore, MD, pp 1–67

    Google Scholar 

  • Maier W (1999) On the evolutionary biology of early mammals—with methodological remarks on the interaction between ontogenetic adaptation and phylogenetic transformation. Zool Anz 238(1):55–74

    Google Scholar 

  • Martin T, Rauhut OWM (2005) Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth. J Vert Paleontol 25 (2):414–425. https://doi.org/10.1671/0272-4634(2005)025%5b0414:madoap%5d2.0.co;2

    Google Scholar 

  • McNab BK (1978) The evolution of endothermy in the phylogeny of mammals. Am Nat 112(1):1–21

    Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Comstock Publishing Associates, Ithaca, NY

    Google Scholar 

  • Meng J, Wyss AR (2001) The morphology of Tribosphenomys (Rodentiaformes, Mammalia): phylogenetic implications for basal Glires. J Mamm Evol 8(1):1–71. https://doi.org/10.1023/a:1011328616715

    Google Scholar 

  • Meng Q-J, Ji Q, Zhang Y-G, Liu D, Grossnickle DM, Luo Z-X (2015) An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347(6223):764–768. https://doi.org/10.1126/science.1260879

    Article  CAS  PubMed  Google Scholar 

  • Meredith RW, Zhang G, Gilbert TP, Jarvis ED, Springer MS (2014) Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346(6215). https://doi.org/10.1126/science.1254390

    PubMed  Google Scholar 

  • Míšek I, Witter K, Peterka M, Šterba O, Klima M, Tichý F, Peterková R (1996) Initial period of tooth development in dolphins (Stenella attenuata, Cetacea)—a pilot study. Acta Veter Brno 65:277–284

    Google Scholar 

  • Mitchell J, Heckert AB, Sues H-D (2010) Grooves to tubes: evolution of the venom delivery system in a Triassic reptile. Naturwissenschaften 97(12):1117–1121. https://doi.org/10.1007/s00114-010-0729-0

    CAS  PubMed  Google Scholar 

  • Mook CC (1921) Skull characters of recent Crocodilia, with notes on the affinities of the recent genera. Bull Am Mus Nat Hist 44:123–286

    Google Scholar 

  • Nydam RL, Cifelli RL (2005) New data on the dentition of the scincomorphan lizard Polyglyphanodon sternbergi. Acta Palaeont Pol 50(1):73–78

    Google Scholar 

  • Nydam RL, Gauthier JA, Chiment JJ (2000) The mammal-like teeth of the Late Cretaceous lizard Peneteius aquilonius Estes 1969 (Squamata, Teiidae). J Vert Paleontol 20(3):628–631. https://doi.org/10.1671/0272-4634(2000)020%5b0628:tmltot%5d2.0.co;2

    Google Scholar 

  • O’Meara RN, Asher RJ (2016) The evolution of growth patterns in mammalian versus nonmammalian cynodonts. Paleobiology 42(3):439–464. https://doi.org/10.1017/pab.2015.51

    Article  Google Scholar 

  • Ogle W (1912) The works of Aristotle translated into English. Clarendon Press, Oxford

    Google Scholar 

  • Osborn HF (1888a) The evolution of the mammalian molar to and from the tritubercular type. Am Nat 22(264):1067–1079

    Google Scholar 

  • Osborn HF (1888b) The nomenclature of the mammalian molar cusps. Am Nat 22(262):926–928

    Google Scholar 

  • Osborn HF (1907) Evolution of mammalian molar teeth to and from the triangular type. The MacMillan Company, New York

    Google Scholar 

  • Osborn JW (1971) The ontogeny of tooth succession in Lacerta vivipara Jacquin (1787). Proc R Soc Lond B 179(1056):261–289

    CAS  PubMed  Google Scholar 

  • Ösi A (2014) The evolution of jaw mechanism and dental function in heterodont crocodyliforms. Hist Biol 26(3):279–414. https://doi.org/10.1080/08912963.2013.777533

    Article  Google Scholar 

  • Owen R (1840–45) Odontography; or a treatise on the comparative anatomy of the teeth; their physiological relations, mode of development, and microscopic structure in the vertebrate animals. Hippolyte Bailliere, London

    Google Scholar 

  • Parsons TS, Williams EE (1962) The teeth of Amphibia and their relation to amphibian phylogeny. J Morphol 110(3):375–389

    Google Scholar 

  • Pascual R, Archer M, Jaureguizar EO, Prado JL, Godthelp H, Hand SJ (1999) First discovery of monotremes in South America. Nature 356(6371):704–706. https://doi.org/10.1038/356704a0

    Google Scholar 

  • Phillips MJ, Bennett TH, Lee MSY (2009) Molecules, morphology, and ecology indicate a recent, amphibious ancestry for echidnas. Proc Natl Acad Sci USA 106(40):17089–17094. https://doi.org/10.1073/pnas.0904649106

    Article  PubMed  PubMed Central  Google Scholar 

  • Pledge NS (1986) A new species of Ektopodon (Marsupialia: Phalangeroidea) from the miocene of South Australia. Univ Calif Publ Geol Sci 131:43–67

    Google Scholar 

  • Pol D, Nascimento PM, Carvalho AB, Riccomini C, Pires-Domingues RA, Zaher H (2014) A new notosuchian from the Late Cretaceous of Brazil and the phylogeny of advanced notosuchians. PLoS One 9(4):e93105. https://doi.org/10.1371/journal.pone.0093105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pond CM (1977) The significance of lactation in the evolution of mammals. Evolution 31(1):177–199

    PubMed  Google Scholar 

  • Pregill GK, Gauthier JA, Greene HW (1986) The evolution of helodermatid squamates, with descriptions of new taxa and an overview of Varanoidea. Trans San Diego Nat Hist Soc 21(11):167–202

    Google Scholar 

  • Preuschoft H, Reif W-E, Loitsch C, Tepe E (1991) The function of labyrinthodont teeth: big teeth in small jaws. In: Schmidt-Kittler N, Vogel K (eds) Constructional morphology and evolution. Springer, Berlin, pp 151–171

    Google Scholar 

  • Prothero DR (2006) After the dinosaurs: the age of mammals. Indiana University Press, Bloomington, IN

    Google Scholar 

  • Quinn A, Wilson DE (2004) Daubentonia madagascariensis. Mamm Species 740:1–6

    Google Scholar 

  • Reilly SM, McBrayer LD, White TD (2001) Prey processing in amniotes: biomechanical and behavioral patterns of food reduction. Comp Biochem Physiol A 128(3):397–415

    CAS  Google Scholar 

  • Reisz RR, Müller J (2004) Molecular timescales and the fossil record: a paleontological perspective. Trends Genet 20(5):237–247

    CAS  PubMed  Google Scholar 

  • Reisz RR, Sues H-D (2000) Herbivory in late Paleozoic and Triassic terrestrial vertebrates. In: Sues H-D (ed) Evolution of herbivory in terrestrial vertebrates. Cambridge Univ Press, Cambridge, UK, pp 9–41

    Google Scholar 

  • Rensberger JM, Koenigswald Wv (1980) Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology 6(4):477–495

    Google Scholar 

  • Rieppel O (2002) Feeding mechanics in Triassic stem-group sauropterygians: the anatomy of a successful invasion of Mesozoic seas. Zool J Linn Soc 135(1):33–63

    Google Scholar 

  • Rose KD (2006) The beginning of the age of mammals. The Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Rose KD, Walker A, Jacobs LL (1981) Function of the mandibular tooth comb in living and extinct mammals. Nature 289(5798):583–585

    CAS  PubMed  Google Scholar 

  • Ross CF, Eckhardt A, Herrel A, Hylander WL, Metzger KA, Schaerlaeken B, Washington RL, Williams SH (2007) Modulation of intra-oral processing in mammals and lepidosaurs. Integr Comp Biol 47(1):118–136. https://doi.org/10.1093/icb/icm044

    Article  PubMed  Google Scholar 

  • Rougier GW, Martinelli AG, Forasiepi AM, Novacek MJ (2007) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Amer Mus Novit 3566:1–54

    Google Scholar 

  • Rowe T, Rich TH, Vickers-Rich P, Springer M, Woodburne MO (2008) The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc Natl Acad Sci USA 105(4):1238–1242. https://doi.org/10.1073/pnas.0706385105

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubidge BS, Sidor CA (2001) Evolutionary patterns among Permo-Triassic therapsids. Annu Rev Ecol Syst 32:449–480

    Google Scholar 

  • Ruta M, Coates MI, Quicke DLJ (2003) Early tetrapod relationships revisited. Biol Rev 78(2):251–345. https://doi.org/10.1017/S1464793102006103

    Article  PubMed  Google Scholar 

  • Rybczynski N, Reisz RR (2001) Earliest evidence for efficient oral processing in a terrestrial herbivore. Nature 411(6838):684–687. https://doi.org/10.1038/35079567

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Yamada H (1992) Molar structure in Australian marsupials. In: Smith P, Tchernov E (eds) Structure, function and evolution of teeth. Freund Publishing House, London, pp 103–114

    Google Scholar 

  • Sander PM (1999) The microstructure of reptilian tooth enamel: terminology, function, and phylogeny. Münchner Geowiss Abh 38(A):1–102

    Google Scholar 

  • Sander PM (2000) Prismless enamel in amniotes: terminology, function and evolution. In: Teaford MF, Smith MM, Ferguson MWJ (eds) Development, function and evolution of teeth. Cambridge University Press, Cambridge, UK, pp 92–106

    Google Scholar 

  • Sanderson SL, Wassersug R (1993) Convergent and alternative designs for vertebrate suspension feeding. In: Hall BK (ed) The skull, vol 3. Functional and evolutionary mechanisms. The University of Chicago Press, Chicago, pp 37–112

    Google Scholar 

  • Sauvage H-E (1874) Mémoire sur les Dinosauriens et les Crocodiliens des terrains jurassiques de Boulogne-sur-Mer. Mém Soc Géol France, Sér 2, 10(2):1–58

    Google Scholar 

  • Savage RJG (1977) Evolution in carnivorous mammals. Palaeontology 20(2):237–271

    Google Scholar 

  • Schoch RR, Sues H-D (2015) A Middle Triassic stem-turtle and the evolution of the turtle body plan. Nature 523(7562):584–587. https://doi.org/10.1038/nature14472

    Article  CAS  PubMed  Google Scholar 

  • Schultz JA, Martin T (2014) Function of pretribosphenic and tribosphenic mammalian molars inferred from 3D animation. Naturwissenschaften 101(10):771–781. https://doi.org/10.1007/s00114-014-1214-y

    Article  CAS  PubMed  Google Scholar 

  • Schultz JA, Krause DW, Koenigswald Wv, Dumont ER (2014) Dental function and diet of Vintana sertichi (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar. J Vert Paleontol 34(S1):182–202. https://doi.org/10.1080/02724634.2014.965778

    Google Scholar 

  • Schultze, H-P (1969) Die Faltenzähne der rhipidistiiden Crossopterygier, der Tetrapoden und der Actinopterygier-Gattung Lepisosteus; nebst einer Beschreibung der Zahnstruktur von Onychodus (struniiformer Crossopterygier). Palaeontol Ital 65:63–137

    Google Scholar 

  • Schultze H-P (1970) Folded teeth and the monophyly of tetrapods. Amer Mus Novit 2408:1–10

    Google Scholar 

  • Shoshani J, West RM, Court NC, Savage RJG, Harris JM (1996) The earliest proboscideans: general plan, taxonomy and palaeoecology. In: Shoshani J, Tassy P (eds) The Proboscidea: evolution and palaeoecology of elephants and their relatives. Oxford University Press, Oxford, pp 57–75

    Google Scholar 

  • Sidor CA, Hopson JA (1998) Ghost lineages and “mammalness”: assessing the temporal pattern of character acquisition in the Synapsida. Paleobiology 24(2):254–273

    Google Scholar 

  • Sigurdsen T, Bolt JR (2010) The Lower Permian amphibamid Doleserpeton (Temnospondyli: Dissorophoidea), the interrelationships of amphibamids, and the origin of modern amphibians. J Vert Paleontol 30(5):1360–1377. https://doi.org/10.1080/02724634.2010.501445

    Article  Google Scholar 

  • Silverman HB, Dunbar MJ (1980) Aggressive tusk use by the narwhal (Monodon monoceros L.). Nature 284(5751):57–58

    Google Scholar 

  • Simpson GG (1933) Paleobiology of Jurassic mammals. Paleobiologica 5:127–158

    Google Scholar 

  • Simpson GG (1936) Studies of the earliest mammalian dentitions. Dental Cosmos 1936 (Aug.–Sept.):2–24

    Google Scholar 

  • Simpson GG (1960) Diagnosis of the classes Reptilia and Mammalia. Evolution 14(3):388–392

    Google Scholar 

  • Stafford BJ, Szalay FS (2000) Craniodental functional morphology and taxonomy of dermopterans. J Mammal 81(2):360–385. https://doi.org/10.1644/1545-1542(2000)081%3c0360:cfmato%3e2.0.co;2

    Google Scholar 

  • Stucky RK (1998) Eocene bunodont and bunoselenodont Artiodactyla (“dichobunids”). In: Janis CM, Scott KM, Jacobs LL (eds) Evolution of Tertiary mammals of North America, vol 1. Terrestrial carnivores, ungulates, and ungulatelike mammals. Cambridge University Press, Cambridge, UK, pp 358–374

    Google Scholar 

  • Sudre J, Legendre S (1992) Ungulates from the Paleogene of western Europe: relations between their evolution and environmental changes during that period. In: Spitz J, Janeau G, Gonzalez G, Aulagnier S (eds) Ongulés/Ungulates 91. S.F.E.P.M.-I.R.G.M, Paris, pp 15–25

    Google Scholar 

  • Sues H-D (1991) Venom-conducting teeth in a Triassic reptile. Nature 351(6322):141–143

    Google Scholar 

  • Sues H-D, Reisz RR (1998) Origins and early evolution of herbivory in tetrapods. Trends Ecol Evol 13(4):141–145

    CAS  Google Scholar 

  • Swindler DR (2002) Primate dentitions: an introduction to the teeth of non-human primates. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Thenius E (1989) Zähne und Gebiß der Säugetiere. Walter de Gruyter, Berlin

    Google Scholar 

  • Thomason JJ, Russell AP (1986) Mechanical factors in the evolution of the mammalian secondary palate: a theoretical analysis. J Morphol 189(2):199–213

    CAS  PubMed  Google Scholar 

  • Tiedemann R (1997) Sexual selection in Asian elephants. Science 278(5343):1547–1551

    Google Scholar 

  • Todd TW (1918) An introduction to the mammalian dentition. C.V. Mosby Company, St. Louis

    Google Scholar 

  • Ungar PS (2010) Mammal teeth: origin, evolution, and diversity. The Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Ungar PS (2011) Dental evidence for the diets of Plio-Pleistocene hominins. Yearb Phys Anthropol 54:47–62. https://doi.org/10.1002/Ajpa.21610

    Article  Google Scholar 

  • Ungar PS, Lucas PW (2010) Tooth form and function in biological anthropology. In: Larsen CS (ed) A companion to biological anthropology. Wiley-Blackwell, Malden, MA, pp 516–529

    Google Scholar 

  • van Nievelt AFH, Smith KK (2005) To replace or not to replace: the significance of reduced functional tooth replacement in marsupial and placental mammals. Paleobiology 31(2):324–346. https://doi.org/10.1666/0094-8373(2005)031%5b0324:trontr%5d2.0.co;2

    Google Scholar 

  • Van Valkenburgh B (2007) Déjà vu: the evolution of feeding morphologies in the Carnivora. Integr Comp Biol 47(1):147–163. https://doi.org/10.1093/icb/icm016

    Article  PubMed  Google Scholar 

  • Vizcaíno SF (2009) The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra). Paleobiology 35(3):343–366. https://doi.org/10.1666/0094-8373-35.3.343

    Article  Google Scholar 

  • Vonk FJ, Admiraal JF, Jackson K, Reshef R, de Bakker MAG, Vanderschoot K, van den Berge I, van Atten M, Burgerhout E, Beck A, Mirtschin PJ, Kochva E, Witte F, Fry BG, Woods AE, Richardson MK (2008) Evolutionary origin and development of snake fangs. Nature 454(7204):630–633. https://doi.org/10.1038/nature07178

    Article  CAS  PubMed  Google Scholar 

  • Ward R (1998) Roland Ward’s African records of big game. Rowland Ward Publications, San Antonio, TX

    Google Scholar 

  • Waters NE (1980) Some mechanical and physical properties of teeth. In: Vincent JFV, Currey JD (eds) The mechanical properties of biological materials. The Society for Experimental Biology, London, pp 99–135

    Google Scholar 

  • Weller JM (1968) Evolution of mammalian teeth. J Paleontol 42(2):268–290

    Google Scholar 

  • Wells RT (1989) Vombatidae. In: Walton DW, Richardson BJ (eds) Fauna of Australia, vol 1B. Mammalia. Australian Government Publishing Service, Canberra, ACT, pp 755–768

    Google Scholar 

  • Werdelin L (1987) Jaw geometry and molar morphology in marsupial carnivores: analysis of a constraint and its macroevolutionary consequences. Paleobiology 13(3):342–35

    Google Scholar 

  • Werdelin L (1988) Circumventing a constraint: the case of Thylacoleo (Marsupialia: Thylacoleonidae). Austr J Zool 36(5):565–571

    Google Scholar 

  • Werth AJ (2000) Feeding in marine mammals. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic Press, New York, pp 475–514

    Google Scholar 

  • Whitlock JA, Richman JM (2013) Biology of tooth replacement in amniotes. Int J Oral Sci 2013(5):66–70

    PubMed  PubMed Central  Google Scholar 

  • Wilson GP, Evans AR, Corfe IJ, Smits PD, Fortelius M, Jernvall J (2012) Adaptive radiation of multituberculate mammals before the extinction of dinosaurs. Nature 483(7390):457–460. https://doi.org/10.1038/Nature10880

    Article  CAS  PubMed  Google Scholar 

  • Wood AE (1962) The Early Tertiary rodents of the family Paramyidae. Trans Amer Phil Soc 52(1):1–261

    Google Scholar 

  • Wood CB, Dumont ER, Crompton AW (1999) New studies of enamel microstructure in Mesozoic mammals: a review of enamel prisms as a mammalian synapomorphy. J Mamm Evol 6(2):177–213. https://doi.org/10.1023/A:1020624222324

    Article  Google Scholar 

  • Wood CB, Rougier GW (2005) Updating and recoding enamel microstructure in Mesozoic mammals: in search of discrete characters for phylogenetic reconstruction. J Mamm Evol 12(3):433–460. https://doi.org/10.1007/s10914-005-6971-0

    Article  Google Scholar 

  • Wood CB, Stern DN (1997) The earliest prisms in reptilian and mammalian enamel. In: Koenigswald Wv, Sander PM (eds) Tooth enamel microstructure. A. A. Balkema, Rotterdam, pp 63–83

    Google Scholar 

  • Woodburne MO (2003) Monotremes as pretribosphenic mammals. J Mamm Evol 10(3):195–248. https://doi.org/10.1023/B:JOMM.0000015104.29857.f0

    Article  Google Scholar 

  • Woodburne MO (1987) The Ektopodontidae, an unusual family of Neogene phalangeroid marsupials. In: Archer M (ed) Possums and opossums: studies in evolution. Surrey Beatty and Sons, Chipping Norton, NSW, pp 603–606

    Google Scholar 

  • Wu X-C, Sues H-D (1996) Anatomy and phylogenetic relationships of Chimaerasuchus paradoxus, an unusual crocodyliform reptile from the Lower Cretaceous of Hubei. China. J Vert Paleontol 16(4):688–702

    Google Scholar 

  • Yilmaz ED, Schneider GA, Swain MV (2015) Influence of structural hierarchy on the fracture behaviour of tooth enamel. Phil Trans R Soc A Math Phys Eng Sci 373(2036). https://doi.org/10.1098/rsta.2014.0130

    Google Scholar 

  • Zahradnicek O, Horacek I, Tucker AS (2008) Viperous fangs: development and evolution of the venom canal. Mech Dev 125(9–10):786–796. https://doi.org/10.1016/j.mod.2008.06.008

    Article  CAS  PubMed  Google Scholar 

  • Zhang F-K, Crompton AW, Luo Z-X, Schaff CR (1998) Pattern of dental replacement of Sinoconodon and its implications for evolution of mammals. Vert PalAsiat 36(3):197–217

    Google Scholar 

Download references

Acknowledgements

We thank Vincent Bels for his kind invitation for us to contribute to this volume and Alejandro Rico-Guevara for his careful and thoughtful review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter S. Ungar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ungar, P.S., Sues, HD. (2019). Tetrapod Teeth: Diversity, Evolution, and Function. In: Bels, V., Whishaw, I. (eds) Feeding in Vertebrates. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13739-7_11

Download citation

Publish with us

Policies and ethics