Skip to main content

Potential Biotechnological Applications of Microalgae Grown in Wastewater: A Holistic Approach

  • Chapter
  • First Online:
Application of Microalgae in Wastewater Treatment

Abstract

Industrial revolution and population burst have turned out to be the major causes of environmental pollution. Economic growth of countries depends on industrial development which is a major environment polluter as they discharge their wastes into the nearby waterbodies. Another burning issue for the world is fossil fuel scarcity and increased discharge of greenhouse gases resulting in climate change. Therefore researchers around the world are searching for an eco-friendly tool that depollutes wastewater in addition to providing alternatives to the fossil fuel. Microalgae appear to be a feasible option for this purpose. The current chapter describes in detail the composition of wastewater, phycoremediation, nutrient and heavy metal uptake mechanism by microalgae, wastewater utilisation for the cost-effective biofuel production and finally utilisation of their biomass for other commercial purposes such as in food industry, health sector and cosmetic industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19:257–275

    CAS  Google Scholar 

  • Acien FG, Fernandez JM, Magan JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353

    Article  CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  Google Scholar 

  • Ambrosi MA, Reinehr CO, Bertolin TE, Costa JA, Colla LM (2008) Health properties of Spirulina spp. J Basic Appl Pharma Sci 29(2):109–117

    CAS  Google Scholar 

  • Ashton B, Hill K, Piazza A, Zeitz R (1984) Famine in China, 195861. Popu Dev Rev 10:613–645

    Article  Google Scholar 

  • Becker W (2004) Microalgae in human and animal nutrition. In: Richmond A (ed) Handbook of microalgal culture. Blackwell, Oxford, pp 312–351

    Google Scholar 

  • Bhagavathy S, Sumathi P, Jancy I, Bell S (2011) Green algae Chlorococcum humicola - a new source of bioactive compounds with antimicrobial activity. Asian Pac J Trop Biomed 1:S1–S7

    Article  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Article  CAS  Google Scholar 

  • Bixler HJ, Porse H (2011) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335

    Article  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Cai T, Stephen Y, Park YL (2013) Nutrient recovery from waste water streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Carolin CF, Kumar PS, Saravanan A et al (2017) Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5:2782–2799

    Article  CAS  Google Scholar 

  • Chaput G, Charmanski K, Farag I (2012) Sustainable production of microalgae oil feedstock using municipal wastewater and CO2 fertilization. Int J Eng Sci Technol 4:3489–3499

    Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Colak O, Kaya Z (1988) A study on the possibilities of biological wastewater treatment using algae. Doga Biyolji Serisi 12(1):18–29

    Google Scholar 

  • Colla LM, Reinehr CO, Reichert C, Costa JAV (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol 98(7):1489–1493

    Article  CAS  Google Scholar 

  • Costa JA, Morais MG (2013) Microalgae for food production. In: Soccol CR, Pandey A, Larroche C (eds) Fermentation process engineering in the food industry. Taylor & Francis, Boca Raton, p 486

    Google Scholar 

  • Costanzo SD, O’Donohue MJ, Dennison WC et al (2001) A new approach for detecting and mapping sewage impacts. Mar Pollut Bull 42:149–156

    Article  CAS  Google Scholar 

  • Davidson K, Gowen RJ, Tett P (2012) Harmful algal blooms: how strong is the evidence that nutrient ratios and forms influence their occurrence? Estuar Coast Shelf Sci 115:399–413

    Article  CAS  Google Scholar 

  • Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507

    Article  CAS  Google Scholar 

  • Dominguez H (2013) Functional ingredients from algae for foods and nutraceuticals. Elsevier. ISBN 9780857098689

    Google Scholar 

  • Duenas JF, Alonso JR, Rey ÀF, Ferrer AS (2003) Characterisation of phosphorous forms in wastewater treatment plants. J Hazard Mater 97:193–205

    Article  CAS  Google Scholar 

  • Ferreira A, Herpin U, Monteiro A (2007) Agricultural use of treated sewage effluents: agronomic and environmental implications and perspectives for Brazil. Sci Agric 64:194–209

    Article  Google Scholar 

  • Francavilla M, Trotta P, Luque R (2010) Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Bioresour Technol 101(11):4144–4150

    Article  CAS  Google Scholar 

  • Gochfeld M (2003) Cases of mercury exposure, bioavailability, and adsorption. Ecotoxicol Environ Saf 56:174–179

    Article  CAS  Google Scholar 

  • Graneli E, Weberg M, Salomon PS (2008) Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8:94–102

    Article  CAS  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Guo T, Englehardt J, Wu T (2015) Review of cost versus scale: water and wastewater treatment and reuse processes. Water Sci Technol 69:223–234

    Article  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14(3):1037–1047

    Article  CAS  Google Scholar 

  • Hills C, Nakamura H (1978) Food from sunlight. World Hunger Research Publ, Boulder Creek, CA

    Google Scholar 

  • Horikoshi T, Nakajima A, Sakaguchi T (1981) Studies on the accumulation of heavy metal elements in biological systems-XIX. Accumulation of uranium by microorganisms. Eur J Appl Microbiol Biotechnol 12:90–96

    Article  CAS  Google Scholar 

  • Huang GH, Chen F, Wei D, Zhang XW, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  CAS  Google Scholar 

  • Ibanez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 93(4):703–709

    Article  CAS  Google Scholar 

  • Jain R, Raghukumar S, Tharanathan R, Bhosle NB (2005) Extracellular polysaccharide production by thraustochytrid protists. Mar Biotechnol 7:184–192

    Article  CAS  Google Scholar 

  • Jea JY, Park PJ, Kim EK, Park JS, Yoon HD (2009) Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy. Food Sci Technol 42:874–878

    Google Scholar 

  • Kelly MG, Whitton BA (1995) The trophic diatom index: a new index for monitoring eutrophication in rivers. J Appl Phycol 7:433–444

    Article  Google Scholar 

  • Kim SK, Ravichandran YD, Khan SB, Kim YT (2008) Prospective of the cosmeceuticals derived from marine organisms. Biotechnol Bioprocess Eng 13:511–523

    Article  CAS  Google Scholar 

  • Lau PS, Tam NFY, Wang YS (1995) Effect of algal density on nutrient removal from primary settled wastewater. Environ Pollut 89:56–66

    Article  Google Scholar 

  • Lim S, Chu W, Phang S (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. J Bioresour Technol 101:7314–7322

    Article  CAS  Google Scholar 

  • Liu Y, Cao Q, Luo F, Chen J (2009) Biosorption of Cd2+, Cu2+, Ni2+ and Zn2+ ions from aqueous solutions by pretreated biomass of brown algae. J Hazard Mater 163:931–938

    Article  CAS  Google Scholar 

  • Madkour FF, Abdel-Daim MM (2013) Hepatoprotective and antioxidant activity of Dunaliella salina in paracetamol-induced acute toxicity in rats. Indian J Pharm Sci 75(6):642–648

    Google Scholar 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31(8):1532–1542

    Article  CAS  Google Scholar 

  • Marti E, Aumatell J, Gode L (2001) Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. J Environ Qual 33:285–293

    Article  Google Scholar 

  • Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am J Sci 282:401–450

    Article  CAS  Google Scholar 

  • Mishra N, Panda PK, Parida BK, Mishra BK (2016) Way forward to achieve sustainable and cost-effective biofuel production from microalgae: a review. Int J Env Sci Tech 13:2735–2756

    Article  Google Scholar 

  • Mulbry W, Kondrad S, Pizarro C, Kebede WE (2008) Treatment of dairy manure effluent using fresh water algae: algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour Technol 99:8137–8142

    Article  CAS  Google Scholar 

  • Munoz R, Guieysse B (2008) Algal–bacterial processes for the treatment of hazardous 755 contaminants: a review. Water Res 40:2799–2815

    Article  Google Scholar 

  • Nizard C, Friguet B, Moreau M, Bulteau AL, Saunois A (2007) Use of phaeodactylum algae extract as cosmetic agent promoting the proteasome activity of skin cells and cosmetic composition comprising same, US patent (US7220417B2). 

    Google Scholar 

  • Olgum EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Article  Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122:73–105

    Google Scholar 

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–334

    Article  Google Scholar 

  • Pandi M, Shashirekha V, Swamy M (2009) Biosorption of chromium from retan chrome liquor by cyanobacteria. Microbiol Res 164:420–428

    Article  CAS  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae - a review. J Algal Biomass Util 3:89–100

    Google Scholar 

  • Przytocka-Jusiak M, Duszota M, Matusiak K, Mycielski R (1984) Intensive culture of Chlorella vulgaris/AA as the second stage of biological purification of nitrogen industry wastewaters. Water Res 18:1–7

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  Google Scholar 

  • Quinn JC, Davis R (2016) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452

    Article  Google Scholar 

  • Raja R, Hemaiswarya S, Kumar NA, Sridhar S, Rengasamy R (2008) A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol 34:77–88

    Article  CAS  Google Scholar 

  • Rai UN, Singh NK, Verma S, Prasad D, Upadhyay AK (2011) Perspectives in plant based management of Ganga water pollution: a negative carbon technique to rehabilitate river ecosystem. Appl Bot Abs 31(1):64–81

    Google Scholar 

  • Rawat I, Ranjith RK, Mutanda T, Bux F (2011) Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  CAS  Google Scholar 

  • Ruiz G, Jeison D, Chamy R (2003) Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res 37:1371–1377

    Article  CAS  Google Scholar 

  • Saidani K, Bedjou F, Benabdesseiam F, Touati N (2012) Antifungal activity of methanolic extracts of four Algerian marine algae species. Afr J Biotechnol 11:9496–9500

    Article  Google Scholar 

  • Sajilata MG, Singhal RS, Kamat MY (2008) Fractionation of lipids and purification of ã-linolenic acid (GLA) from Spirulina platensis. Food Chem 109(3):580–586

    Article  CAS  Google Scholar 

  • Sarkar B, Chakrabarti PP, Vijaykumar A, Kale V (2006) Wastewater treatment in dairy industries-possibility of reuse. Desalination 195(1–3):141–152

    Article  CAS  Google Scholar 

  • Shick JM, Dunlap WC (2002) Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Annu Rev Physiol 64:223–262

    Article  CAS  Google Scholar 

  • Singh L, Pavankumar AR, Lakshmanan R (2012) Effective removal of Cu2+ ions from aqueous medium using alginate as biosorbent. Ecol Eng 38:119–124

    Article  Google Scholar 

  • Singh AK, Ganguly R, Kumar S, Pandey AK (2017) Microalgae: a source of Nutraceuticals and industrial product. In: Abidi MM, Ansari MI, Maheshwari RK (eds) Molecular biology and pharmacognosy of beneficial plant. Lenin media private limited, Delhi. ISBN: 978–93–85995-56-9, pp 37–51

    Google Scholar 

  • Singh AK, Pandey AK (2018) Microalgae: an eco-friendly tool for the industrial wastewater treatment and biofuel production. In: Recent Advances in Environmental Management (Ed. RN Bhargava) pp 167–196, CRC Press, Taylor & Francis Group, Boca Raton, FL 33487-2742, USA

    Google Scholar 

  • Smee DF, Bailey KW, Wong MH, O’Keefe BR, Gustafson KR, Mishin VP (2008) Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N. Antivir Res 80(3):266–271

    Article  CAS  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  Google Scholar 

  • Umamaheswari J, Shanthakumar S (2016) Efficacy of microalgae for industrial wastewater treatment a review on operating conditions, treatment efficiency and biomass productivity. Rev Environ Sci Biotechnol 15:265–284

    Article  CAS  Google Scholar 

  • Venugopal V (2009) Marine products for healthcare. CRC Press, Boca Raton

    Google Scholar 

  • Verdy C, Branka JE, Mekideche N (2011) Quantitative assessment of lactate and progerin production in normal human cutaneous cells during normal ageing: effect of an Alaria esculenta extract. Int J Cosmet Sci 33:462–466

    Article  CAS  Google Scholar 

  • Wu LF, Chen PC, Huang AP, Lee CM (2012) The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour Technol 113:14–18

    Article  CAS  Google Scholar 

  • Wu XF, Kosaric N (1991) Removal of organochlorine compounds in an upflow flocculated algae photo-bioreactor Wat. Sci Technol 24:221–232

    CAS  Google Scholar 

Download references

Acknowledgements

Amit Kumar Singh acknowledges financial support in the form of Senior Research Fellowship from CSIR New Delhi, India. The authors also acknowledge UGC-SAP and DST-FIST facilities of Biochemistry Department, University of Allahabad, Allahabad.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K., Pandey, A.K. (2019). Potential Biotechnological Applications of Microalgae Grown in Wastewater: A Holistic Approach. In: Gupta, S., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13909-4_11

Download citation

Publish with us

Policies and ethics