Skip to main content

A Biorefinery from Nannochloropsis spp. Utilizing Wastewater Resources

  • Chapter
  • First Online:
Application of Microalgae in Wastewater Treatment

Abstract

The marine eustigmatophyte Nannochloropsis spp. offers wide range of biotechnological applications and has the proclivity for being explored in several industrial sectors as a source of various lucrative compounds. In a biorefinery context, this microalga Nannochloropsis spp. is getting exploited as a feedstock for fuel-based products, e.g., biodiesel, bioethanol, biohydrogen, biomethane, and biogas, and highly valued products like bio-pigments (mainly carotenoids) and omega-3 polyunsaturated fatty acids (mainly eicosapentaenoic acid).

Previous researchers bespoke the role of Nannochloropsis spp. in wastewater treatment and their potential of converting wastewater nutrients into various products. However, there exist some challenges in routes of achieving sustainable biorefinery. This book chapter targets to give an overview of the growth characteristics of Nannochloropsis spp. in wastewater, as well as the relevance of its numerous products in the biorefinery while addressing challenges about the upstream and downstream processes. This chapter also provides an outline of the techno-economical assessment of Nannochloropsis spp.-based biorefineries in a wastewater system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam N, Shanableh A (2017) Combined production of three bioenergy resources from Nannochloropsis sp. Microalgae Int J Energy Eng 7:114–119

    Google Scholar 

  • Adarme-Vega TC, Lim DK, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Factories 11:96

    Article  CAS  Google Scholar 

  • Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215e25

    Google Scholar 

  • Biller P, Riley R, Ross AB (2011) Catalytic hydrothermal processing of microalgae: decomposition and upgrading of lipids. Bioresour Technol 102:4841e8

    Google Scholar 

  • Biondi N, Bassi N, Chini Zittelli G, Faveri D, Giovannini A, Rodolfi L, Allevi C, Macrì C, Tredici MR (2013) Nannochloropsis sp. F&M-M24: oil production, effect of mixing on productivity and growth in an industrial wastewater. Environ Prog Sustain Energy 32:846–853

    Article  CAS  Google Scholar 

  • Bohutskyi P, Bouwer E (2013) Biogas production from algae and cyanobacteria through anaerobic digestion: a review, analysis, and research needs. In: Advanced biofuels and bioproducts. Springer, New York, pp 873–975

    Chapter  Google Scholar 

  • Bohutskyi P, Liu K, Nasr LK, Byers N, Rosenberg JN, Oyler GA, Betenbaugh MJ, Bouwer EJ (2015) Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Appl Microbiol Biotechnol 99:6139–6154

    Article  CAS  Google Scholar 

  • Brown TM, Duan P, Savage PE (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuel 24:3639e46

    Google Scholar 

  • Cai T, Park SY, Li Y (2013a) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Cai T, Park SY, Racharaks R, Li YB (2013b) Cultivation of Nannochloropsis salina using anaerobic digestion effluent as a nutrient source for biofuel production. Appl Energy 108:486–492

    Article  CAS  Google Scholar 

  • Campbell P, Beer T, Batten D (2010) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  CAS  Google Scholar 

  • Chua ET, Schenk PM (2017) A biorefinery for Nannochloropsis: induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresour Technol 244:1416

    Article  CAS  Google Scholar 

  • Concawe (2008) Well-to-wheels analysis of future automotive fuels and powertrains in the European context. Well-to-wheels report. Web: http://ies.jrc.ec.europa.eu

    Google Scholar 

  • Danquah MK, Ang L, Uduman N, Moheimani N, Forde GM (2009) Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J Chem Technol Biotechnol 84:1078–1103

    Article  CAS  Google Scholar 

  • De Godos I, Guzman HO, Soto R, García-Encina PA, Bécares E, Muñoz R, Vargas VA (2011) Coagulationnflocculation-based removal of algal-bacterial biomass from piggery wastewater treatment. Bioresour Technol 10231:923–927

    Article  CAS  Google Scholar 

  • Debelius B, Forja JM, DelValls Á, Lubián LM (2009) Toxicity and bioaccumulation of copper and lead in five marine microalgae. Ecotoxicol Environ Saf 72:1503–1513

    Article  CAS  Google Scholar 

  • Doan TTY, Sivaloganathan B, Obbard JP (2011) Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534e44

    Article  CAS  Google Scholar 

  • Dong B, Ho N, Ogden KL, Arnold RG (2014) Cultivation of Nannochloropsis salina in municipal wastewater or digester centrate. Ecotoxicol Environ Saf 103:45–53

    Article  CAS  Google Scholar 

  • Downing JB, Bracco E, Green FB, Ku AY, Lundquist TJ, Zubieta IX, Oswald WJ (2002) Low cost reclamation using the advanced integrated wastewater pond systems® technology and reverse osmosis. Water Sci Technol 45:117–125

    Article  CAS  Google Scholar 

  • Duan P, Savage PE (2011) Hydrothermal liquefaction of a microalgae with heterogeneous catalysts. Ind Eng Chem Res 50:52e61

    Google Scholar 

  • Efremenko EN, Nikolskaya AB, Lyagin IV, Senko OV, Makhlis TA, Stepanov NA, Maslova OV, Mamedova F, Varfolomeev SD (2012) Production of biofuels from pretreated microalgae biomass by anaerobic fermentation with immobilized Clostridium acetobutylicum cells. Bioresour Technol 114:342–348

    Article  CAS  Google Scholar 

  • Ferreira AF, Marques AC, Batista AP, Marques PASS, Gouveia L, Silva CM (2012) Biological hydrogen production by Anabaena sp. – yield, energy and CO2 analysis including fermentative biomass recovery. Int J Hydrog Energy 37:179–190

    Article  CAS  Google Scholar 

  • Ferreira AF, Ribeiro LA, Batista AP, Marques PA, Nobre BP, Palavra AM, da Silva PP, Gouveia L, Silva C (2013) A biorefinery from Nannochloropsis sp. microalga–energy and CO2 emission and economic analyses. Bioresour Technol 138:235–244

    Article  CAS  Google Scholar 

  • Frank ED, Han J, Palou-Rivera I, Elgowainy A, Wang MQ (2011) Life cycle analysis of algal lipid fuels with the GREET model. Energy System Division, Argonne National Laboratory

    Google Scholar 

  • Galindro BM, Lopes RG, Derner RB, Soares SR (2016) Nannochloropsis oculata D. microalgae growth in a treated effluent from superintensive shrimp cultivation. Revista Agrogeoambiental 8:1

    Google Scholar 

  • Gao Y, Yang X, Chen X, Wang D, Hong L (2002) Effect of zinc, selenium and manganese on the growth of a marine microalga Nannochloropsis oculata (Eustigmatophyceae). Chin J Oceanol Limnol 20:93–101

    Google Scholar 

  • Granados MR, Acién FG, Gomez C, Fernández-Sevilla JM, Molina-Grima E (2012) Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol 118:102–110

    Article  CAS  Google Scholar 

  • Gupta PL, Choi HJ, Lee SM (2016) Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol. Environ Sci Pollut Res Int 23:10114–10123

    Article  CAS  Google Scholar 

  • Hibberd DJ (1981) Notes on the taxonomy and nomenclature of the algal classes Eustigmatophyceae and Tribophyceae (synonym Xanthophyceae). Bot J Linn Soc 82:93–119

    Article  Google Scholar 

  • Kent M, Welladsen HM, Mangott A, Li Y (2015) Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One 10:e0118985

    Article  CAS  Google Scholar 

  • Khoo HH, Sharratt PN, Das P, Balasubramanian RK, Naraharisetti PK, Shaik S (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol 102:5800–5807

    Article  CAS  Google Scholar 

  • Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Park MS, Yang JW (2013) Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol Adv 31:862–876

    Article  CAS  Google Scholar 

  • Kinnunen HV, Koskinen PE, Rintala J (2014) Mesophilic and thermophilic anaerobic laboratory-scale digestion of Nannochloropsis microalga residues. Bioresour Technol 155:314–322

    Article  CAS  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Lakaniemi AM, Hulatt CJ, Thomas DN, Tuovinen OH, Puhakka JA (2011) Biogenic hydrogen and methane production from Chlorella vulgaris and Dunaliella tertiolecta. Biotechnol Biofuels 4:34

    Article  CAS  Google Scholar 

  • Lardon L, Helias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43:6475–6481

    Article  CAS  Google Scholar 

  • Ledda C, Villegas GR, Adani F, Fernández FA, Grima EM (2015) Utilization of centrate from wastewater treatment for the outdoor production of Nannochloropsis gaditana biomass at pilot-scale. Algal Res 12:17–25

    Article  Google Scholar 

  • Lee MY, Shin HW (2003) Cadmium-induced changes in antioxidant enzymes from the marine alga Nannochloropsis oculata. J Appl Phycol 15:13–19

    Article  CAS  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102:5138–5144

    Article  CAS  Google Scholar 

  • Ma YB, Wang ZY, Yu CJ, Yin YH, Zhou GK (2014) Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresour Technol 167:503–509

    Article  CAS  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals 15:377–390

    Article  CAS  Google Scholar 

  • Martınez ME, Sánchez S, Jimenez JM, El Yousfi F, Munoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  Google Scholar 

  • Milledge J (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41

    Article  Google Scholar 

  • Mitra M, Patida SK, George B, Shah F, Mishra S (2015a) A euryhaline Nannochloropsis gaditana with potential for nutraceutical (EPA) and biodiesel production. Algal Res 8:161–167

    Article  Google Scholar 

  • Mitra M, Patidar SK, Mishra S (2015b) Integrated process of two stage cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic acid along with biodiesel. Bioresour Technol 193:363–369

    Article  CAS  Google Scholar 

  • Mitra M, Shah F, Bharadwaj SV, Patidar SK, Mishra S (2016) Cultivation of Nannochloropsis oceanica biomass rich in eicosapentaenoic acid utilizing wastewater as a nutrient resource. Bioresour Technol 218:1178–1186

    Article  CAS  Google Scholar 

  • Nicholson FA, Chambers BJ, Williams JR, Unwin RJ (1999) Heavy metal contents of livestock feeds and animal manures in England and Wales. Bioresour Technol 70:23–31

    Article  CAS  Google Scholar 

  • Nobre BP, Villalobos F, Barragan BE, Oliveira AC, Batista AP, Marques PA, Mendes RL, Sovová H, Palavra AF, Gouveia L (2013) A biorefinery from Nannochloropsis sp. microalga–extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour Technol 135:128–136

    Article  CAS  Google Scholar 

  • Olguın EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    Article  CAS  Google Scholar 

  • Oswald WJ (1963) The high-rate pond in waste disposal. Dev Ind Microbiol 4:112–125

    CAS  Google Scholar 

  • Oswald WJ (1988) Micro-algae and wastewater treatment. In: Microalgal Biotechnol. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civ Eng 122:73–105

    Google Scholar 

  • Paliwal C, Mitra M, Bhayani K, Bharadwaj SV, Ghosh T, Dubey S, Mishra S (2017) Abiotic stresses as tools for metabolites in microalgae. Bioresour Technol 244:1216–1226

    Article  CAS  Google Scholar 

  • Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42

    Article  CAS  Google Scholar 

  • Polishchuk A, Valev D, Tarvainen M, Mishra S, Kinnunen V, Antal T, Yang B, Rintala J, Tyystjärvi E (2015) Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry. Bioresour Technol 193:469–476

    Article  CAS  Google Scholar 

  • Rawat I, Kumar RR, Mutanda T, Bux F (2011) Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88:3411–3424

    Article  CAS  Google Scholar 

  • Reyimu Z, Ízšimen D (2017) Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. J Clean Prod 1(150):40–46

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100e12

    Article  CAS  Google Scholar 

  • Rwehumbiza VM, Harrison R, Thomsen L (2012) Alum-induced flocculation of preconcentrated Nannochloropsis salina: residual aluminium in the biomass, FAMEs and its effects on microalgae growth upon media recycling. Chem Eng J 200:168–175

    Article  CAS  Google Scholar 

  • Salim S, Bosma R, Vermuë MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23:849–855

    Article  Google Scholar 

  • Samarakoon KW, O-Nam K, Ko JY, Lee JH, Kang MC, Kim D, Lee JB, Lee JS, Jeon YJ (2013) Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate. J Appl Phycol 25:1595–1606

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of micropollutants in aquatic systems. Science 313:1072–1077

    Article  CAS  Google Scholar 

  • Schwede S, Rehman ZU, Gerber M, Theiss C, Span R (2013a) Effects of thermal pretreatment on anaerobic digestion of Nannochloropsis Salina biomass. Bioresour Technol 143:505–511

    Article  CAS  Google Scholar 

  • Schwede S, Kowalczyk A, Gerber M, Span R (2013b) Anaerobic co-digestion of the marine microalga Nannochloropsis salina with energy crops. Bioresour Technol 148:428–435

    Article  CAS  Google Scholar 

  • Sheets JP, Ge X, Park SY, Li Y (2014) Effect of outdoor conditions on Nannochloropsis Salina cultivation in artificial seawater using nutrients from anaerobic digestion effluent. Bioresour Technol 152:154–161

    Article  CAS  Google Scholar 

  • Silva TL, Reis A, Medeiros R, Oliveira AC, Gouveia L (2009) Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl Biochem Biotechol 159:568–578

    Article  CAS  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Sirakov IN, Velichkova KN (2014) Bioremediation of wastewater originate from aquaculture and biomass production from microalgae species-Nannochloropsis oculata and Tetraselmis chuii. Bulgarian J Agric Sci 20:66–72

    Google Scholar 

  • Smith BT, Davis RH (2012) Sedimentation of algae flocculated using naturally-available magnetic-based flocculants. Algal Res 1:32–39

    Article  CAS  Google Scholar 

  • Soratana K, Landis AE (2011) Evaluating industrial symbiosis and algae cultivation from a life cycle perspective. Bioresour Technol 102:6892–6901

    Article  CAS  Google Scholar 

  • Srinivas R, Ochs C (2012) Effect of UV-A irradiance on lipid accumulation in Nannochloropsis oculata. J Photochem Photobiol 88:684–689

    Article  CAS  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24:4062–4077

    Article  CAS  Google Scholar 

  • Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72

    Article  CAS  Google Scholar 

  • Şirin S, Sillanpää M (2015) Cultivating and harvesting of marine alga Nannochloropsis oculata in local municipal wastewater for biodiesel. Bioresour Technol 191:79–87

    Article  CAS  Google Scholar 

  • Tam NFY, Wong YS (1989) Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ Pollut 58:19–34

    Article  CAS  Google Scholar 

  • Thurmond W (2009) Algae 2020: advanced biofuel markets and commercialization outlook, 1st edn, p 460

    Google Scholar 

  • Tibbetts SM, Bjornsson WJ, McGinn PJ (2015) Biochemical composition and amino acid profiles of Nannochloropsis granulata algal biomass before and after supercritical fluid CO2 extraction at two processing temperatures. Anim Feed Sci Technol 204:62–71

    Article  CAS  Google Scholar 

  • Toor SS, Reddy H, Deng S, Hoffmann J, Spangsmark D, Madsen LB, Holm-Nielsen JB, Rosendahl LA (2013) Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions. Bioresour Technol 131:413–419

    Article  CAS  Google Scholar 

  • Torri C, Garcı´a Alba L, Samori C, Fabbri D, Brilman DWF (2012) Hydrothermal treatment (HTT) of microalgae: detailed molecular characterization of HTT oil in view of HTT mechanism elucidation. Energy Fuel 26:658e71

    Article  CAS  Google Scholar 

  • van den Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to phycology. Cambridge University Press, Cambridge

    Google Scholar 

  • Valdez PJ, Dickinson JG, Savage PE (2011) Characterization of product fractions from hydrothermal liquefaction of Nannochloropsis sp. and the influence of solvents. Energy Fuel 25:3235e43

    Article  CAS  Google Scholar 

  • Wang KS, Chai TJ (1994) Reduction in omega-3 fatty acids by UV-B irradiation in microalgae. J Appl Phycol 6:415–422

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796e9

    Article  CAS  Google Scholar 

  • Wijffels RH, Kruse O, Hellingwerf KJ (2013) Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr Opin Biotechnol 24:405–413

    Article  CAS  Google Scholar 

  • Xia A, Cheng J, Lin R, Lu H, Zhou J, Cen K (2013) Comparison in dark hydrogen fermentation followed by photo hydrogen fermentation and methanogenesis between protein and carbohydrate compositions in Nannochloropsis oceanica biomass. Bioresour Technol 138:204–213

    Article  CAS  Google Scholar 

  • Xu L, Brilman DWF, Withag JAM, Brem G, Kersten S (2011) Assessment of a dry and a wet route for the production of biodiesel from microalgae: energy balance analysis. Bioresour Technol 102:5113–5122

    Article  CAS  Google Scholar 

  • Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, Yuan Z (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47:4294–4302

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The first author is grateful for the CSIR-GATE fellowship awarded by CSIR and AcSIR for the Ph.D. enrollment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, M., Mishra, S. (2019). A Biorefinery from Nannochloropsis spp. Utilizing Wastewater Resources. In: Gupta, S., Bux, F. (eds) Application of Microalgae in Wastewater Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-13909-4_6

Download citation

Publish with us

Policies and ethics