Skip to main content

Quantitative Measurements of Octopus vulgaris Arms for Bioinspired Soft Robotics

  • Chapter
  • First Online:
Metrics of Sensory Motor Coordination and Integration in Robots and Animals

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 36))

Abstract

Bioinspiration is a popular trend in robotics research. Bioinspired design needs a deep knowledge of the selected biological model in order to extract the key features relevant to the design of the robot system. The octopus is an ideal model for soft robotics and has served as inspiration for the development of octopus-like robots and robot arms. The muscular hydrostat that composes the octopus arms is one of the key principles to imitate from the octopus, as well as the arm suckers. An engineering analysis and measurements is required, especially to understand the dimensions of deformations, the stiffness variability, the forces applied, the working principles of reaching and adhesion. We developed methods for measuring the octopus arm in vivo and we measured elongation and shortening, pulling force, stiffening, and morphology, quantitatively. The resulting data were used to create novel design principles and specifications used in developing new soft robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyle, P.R.: The UFAW Handbook on the Care and Management of Cephalopods in the Laboratory, p. 63. Universities Federation for Animal Welfare, Herts (1991)

    Google Scholar 

  2. Calisti, M., Giorelli, M., Levy, G., Mazzolai, B., Hochner, B., Laschi, C., Dario, P.: An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinsp. Biomim. 6(3), 10

    Google Scholar 

  3. Cianchetti, M., Arienti, A., Follador, M., Mazzolai, B., Dario, P., Laschi, C.: Design concept and validation of a robotic arm inspired by the octopus. Mater. Sci. Eng. C 31, 1230–1239 (2011)

    Article  Google Scholar 

  4. Dario, P., Carrozza, M.C., Guglielmelli, E., Laschi, C., Menciassi, A., Micera, S., Vecchi, F.: Robotics as a future and emerging technology: biomimetics, cybernetics and neuro-robotics in European projects. IEEE Robot. Autom. Mag. 12(2), 29–43 (2005)

    Article  Google Scholar 

  5. Ijspeert, A., Crespi, A., Ryczko, D., Cabelgruen, J.M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science 315, 1416–1420 (2007)

    Article  Google Scholar 

  6. Kier, W.M.: Hydrostatic skeletons and muscular hydrostats. In: Biewener, A.A. (ed.) Biomechanics (Structures and System): A Practical Approach, pp. 205–231. IRL Press at Oxford University Press, New York (1992)

    Google Scholar 

  7. Kier, W.M., Smith, A.M.: The morphology and mechanics of octopus suckers. Biol. Bull. 178, 126–136 (1990)

    Article  Google Scholar 

  8. Kier, W.M., Smith, A.M.: The structure and adhesive mechanism of octopus suckers. Integr. Comp. Biol. 42, 1146–1153 (2002)

    Article  Google Scholar 

  9. Laschi, C., Mazzolai, B., Cianchetti, M., Margheri, L., Follador, M., Dario, P.: A soft robot arm inspired by the octopus. Advanc. Robot. (Special Issue on Soft Robotics) 26(7) (2012)

    Google Scholar 

  10. Laschi, C., Mazzolai, B., Mattoli, V., Cianchetti, M., Dario, P.: Design of a biomimetic robotic octopus arm. Bioinsp. Biomim. 4(1) (2009)

    Google Scholar 

  11. Margheri, L., Ponte, G., Mazzolai, B., Laschi, C., Fiorito, G.: Non-invasive study of Octopus vulgaris arm morphology using ultrasound. J. Experiment. Biol. 214, 3727–3731 (2011)

    Article  Google Scholar 

  12. Margheri, L., Laschi, C., Mazzolai, B.: Soft robotic arm inspired by the octopus. I. From biological functions to artificial requirements. Bioinsp. Biomim. 7(2) (2012)

    Google Scholar 

  13. Margheri, L., Mazzolai, B., Cianchetti, M., Dario, P., Laschi, C.: Tools and methods for experimental in-vivo measurement and biomechanical characterization of an Octopus vulgaris arm. In: Proceedings 31st IEEE International Conference Engineering in Medicine and Biology Society EMBC ’09, pp. 7196–7199. MN, USA (2009)

    Google Scholar 

  14. Margheri, L., Mazzolai, B., Ponte, G., Fiorito, G., Dario, P., Laschi, C.: Methods and tools for the anatomical study and experimental in vivo measurement of the Octopus vulgaris arm for biomimetic design BioRob 2010: Third IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 467–472. Tokyo, Japan (2010)

    Google Scholar 

  15. Messenger, J.B., Nixon, M., Ryan, K.P.: Magnesium chloride as an anaesthetic for cephalopods. Comp. Biochem. Physiol. C 82, 203–205 (1985)

    Article  Google Scholar 

  16. Naef, A.: Fauna and Flora of the Bay of Naples. Cephalopoda. Jerusalem: Israel Program for Scientific Translations, p. 292 (1972)

    Google Scholar 

  17. Nixon, M., Dilly, P.N.: Sucker surfaces and prey capture. Symp. Zool. Soc. Lond. 38, 447–511 (1977)

    Google Scholar 

  18. Packard, A.: The skin of cephalopods (coleoids): general and special adaptations. In: Trueman, E.R., Clarke, M.R. (eds.) The Mollusca-Form and Function, pp. 37–67. Academic Press, San Diego (1988)

    Chapter  Google Scholar 

  19. Scherge, M., Gorb, S.: Biological Micro and Nano-Tribology. Springer, New York (2001)

    Book  Google Scholar 

  20. Scholten, R.R., Pillen, S., Verrips, A., Zwarts, M.J.: Quantitative ultrasonography of skeletal muscles in children: normal values. Muscle Nerve 27, 693–698 (2003)

    Google Scholar 

  21. Smith, K.K., Kier, W.M.: Trunks, tongues and tentacles: moving with skeletons of muscle. Am. Sci. 77, 28–35 (1989)

    Google Scholar 

  22. Sumbre, G., Gutfreund, Y., Fiorito, G., Flash, T., Hochner, B.: Control of octopus arm extension by a peripheral motor program. Science 293, 1845–1848 (2001)

    Google Scholar 

  23. Tramacere, F., Appel, E., Mazzolai, B., Gorb, S.N.: Hairy suckers: the surface microstructure and its possible functional significance in the Octopus vulgaris sucker, Beilstein. J. Nanotechnol. 5, 561–565 (2014)

    Google Scholar 

  24. Tramacere, F., Beccai, L., Kuba, M., Gozzi, A., Bifone, A., Mazzolai, B.: The morphology and adhesion mechanism of octopus vulgaris suckers. PLoS ONE 8(6), e65074 (2013)

    Article  Google Scholar 

  25. Tramacere, F., Kovalev, A., Kleinteich, T., Gorb, S.N., Mazzolai, B.: Structure and mechanical properties of Octopus vulgaris suckers. J. R. Soc. Interface 11, 20130816 (2014)

    Article  Google Scholar 

  26. Vogel, S.: Comparative Biomechanics: Life‘s Physical World. Princeton University Press, Oxford, UK (2003)

    MATH  Google Scholar 

  27. Walker, I.D.: Some issues in creating “invertebrate” robots. In: Proceedings of the International Symposium on Adaptive Motion of Animals and Machines. Montreal, Canada (2000)

    Google Scholar 

  28. Walker, I.D., Dawson, D., Flash, T., Grasso, F., Hanlon, R., Hochner, B., Kier, W., Pagano, C., Rahn C.D., Zhang, Q.M.: Continuum robot arms inspired by cephalopods. In: Proceedings SPIE Conference Unmanned Ground Vehicle Technology, pp. 303–314. Orlando, FL (2005)

    Google Scholar 

  29. Webb, B., Consi, T.: Biorobotics: Methods and Applications, MIT Press (2001)

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support from the European Commission through the OCTOPUS IP, FP7-ICT 2007.8.5, FET Proactive, Embodied Intelligence, Grant agreement no. 231608, 2009-2013, and from COST Action TD0906 ‘Biological Adhesives: from Biology to Biomimetics’ (COST-STSM-TD0906-11884).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Barbara Mazzolai , Laura Margheri or Cecilia Laschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mazzolai, B., Margheri, L., Laschi, C. (2020). Quantitative Measurements of Octopus vulgaris Arms for Bioinspired Soft Robotics. In: Bonsignorio, F., Messina, E., del Pobil, A., Hallam, J. (eds) Metrics of Sensory Motor Coordination and Integration in Robots and Animals. Cognitive Systems Monographs, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-14126-4_1

Download citation

Publish with us

Policies and ethics