Skip to main content

Application and Exploration of Sensorimotor Coordination Strategies in Surgical Robotics

  • Chapter
  • First Online:
Metrics of Sensory Motor Coordination and Integration in Robots and Animals

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 36))

Abstract

Robot-assisted minimally invasive surgery (RAMIS) is a highly complex sensorimotor task. The architecture of current RAMIS platforms enables surgeons to use master manipulators to precisely and intuitively control surgical instruments to complete intricate procedures. However, a comprehensive understanding of surgeon sensorimotor behavior is lacking. In this chapter, we discuss a research avenue that seeks to improve RAMIS by applying ideas from basic science and, in turn, to further develop these ideas to improve our fundamental understanding of human sensorimotor coordination. We discuss why RAMIS could serve as an excellent research platform, as well as what general assumptions are made when applying theories to RAMIS. In the end, we believe that RAMIS provides an exciting opportunity for integrated research in robotics and sensorimotor behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abboudi, H., Khan, M.S., Aboumarzouk, O., Guru, K.A., Challacombe, B., Dasgupta, P., Ahmed, K.: Current status of validation for robotic surgery simulators–a systematic review. BJU Int. (2012)

    Google Scholar 

  2. Ahmidi, N., Hager, G., Ishii, L., Fichtinger, G., Gallia, G., Ishii, M.: Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery. In: Jiang, T. et al. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2010, vol. 6363, pp 295–302. Springer Berlin Heidelberg (2010)

    Google Scholar 

  3. Albert, M.V., Kording, K., Herrmann, M., Jayaraman, A.: Fall classification by machine learning using mobile phones. PLoS ONE 7, e36556 (2012)

    Article  Google Scholar 

  4. Albert, M.V., Toledo, S., Shapiro, M., Kording, K.: Using mobile phones for activity recognition in Parkinson’s patients. Front. Neurol. 3 (2012)

    Google Scholar 

  5. Amodeo, A., Linares Quevedo, A., Joseph, J.V., Belgrano, E., Patel, H.R.: Robotic laparoscopic surgery: cost and training. Minerva Urol. Nefrol. 61, 121–128 (2009)

    Google Scholar 

  6. Antos, S.A., Albert, M.V., Kording, K.P.: Hand, belt, pocket or bag: practical activity tracking with mobile phones. J. Neurosci. Methods (2013)

    Google Scholar 

  7. Avraham, G., Nisky, I., Fernandes, H., Acuna, D., Kording, K., Loeb, G., Karniel, A.: Towards perceiving robots as humans—three handshake models face the turing-like handshake test. IEEE Trans. Haptics 5, 196–207 (2012)

    Article  Google Scholar 

  8. Balasubramanian, R., Howe, R.D., Matsuoka, Y.: Task performance is prioritized over energy reduction. IEEE Trans. Biomed. Eng. 56, 1310–1317 (2009)

    Article  Google Scholar 

  9. Ballantyne, G.H.: The pitfalls of laparoscopic surgery: challenges for robotics and telerobotic surgery. Surg. Laparosc. Endosc. Percutaneous Tech. 12, 1–5 (2002)

    Article  Google Scholar 

  10. Ben-Itzhak, S., Karniel, A.: Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements. Neural Comput. 20, 779–812 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berniker, M., Jarc, A., Bizzi, E., Tresch, M.C.: Simplified and effective motor control based on muscle synergies to exploit musculoskeletal dynamics. Proc. Natl. Acad. Sci. 106, 7601–7606 (2009)

    Article  Google Scholar 

  12. Berniker, M., Kording, K.P.: Estimating the relevance of world disturbances to explain savings, interference and long-term motor adaptation effects. PLoS Comput. Biol. 7, e1002210 (2011)

    Article  MathSciNet  Google Scholar 

  13. Bernstein, N.: The Coordination and Regulation of Movements. Pergamon Press, Oxford (1967)

    Google Scholar 

  14. Brayanov, J.B., Smith, M.A.: Bayesian and “Anti-Bayesian” biases in sensory integration for action and perception in the size-weight illusion. J. Neurophysiol. 103, 1518–1531 (2010)

    Article  Google Scholar 

  15. Burdet, E., Franklin, D.W., Milner, T.E.: Human Robotics: Neuromechanics and Motor Control. MIT Press (2013)

    Google Scholar 

  16. Burdet, E., Osu, R., Franklin, D.W., Milner, T.E., Kawato, M.: The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414, 446–449 (2001)

    Article  Google Scholar 

  17. Carey, D.P.: Do action systems resist visual illusions? Trends Cogn. Sci. 5, 109–113 (2001)

    Article  Google Scholar 

  18. Casadio, M., Giannoni, P., Morasso, P., Sanguineti, V.: A proof of concept study for the integration of robot therapy with physiotherapy in the treatment of stroke patients. Clin. Rehabil. 23, 217–228 (2009)

    Article  Google Scholar 

  19. Chang, L., Satava, R., Pellegrini, C., Sinanan, M.: Robotic surgery: identifying the learning curve through objective measurement of skill. Surg. Endosc. Other Interv. Tech. 17, 1744–1748 (2003)

    Article  Google Scholar 

  20. Cohen, R., Sternad, D.: Variability in motor learning: relocating, channeling and reducing noise. Exp. Brain Res. 193, 69–83 (2009)

    Article  Google Scholar 

  21. Cusumano, J., Cesari, P.: Body-goal variability mapping in an aiming task. Biol. Cybern. 94, 367–379 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. da Vinci Research Kit (2013)

    Google Scholar 

  23. Danion, F., Diamond, J.S., Flanagan, J.R.: Separate contributions of kinematic and kinetic errors to trajectory and grip force adaptation when transporting novel hand-held loads. J. Neurosci. 33, 2229–2236 (2013)

    Article  Google Scholar 

  24. Desmurget, M., Jordan, M., Prablanc, C., Jeannerod, M.: Constrained and Unconstrained Movements Involve Different Control Strategies. J. Neurophysiol. 77, 1644–1650 (1997)

    Article  Google Scholar 

  25. Diedrichsen, J., Shadmehr, R., Ivry, R.B.: The coordination of movement: optimal feedback control and byond. Trends Cogn. Sci. 14, 31–39 (2010)

    Article  Google Scholar 

  26. DiMaio, S., Hanuschik, M., Kreaden, U.: The da Vinci surgical system. In: Surgical Robotics, pp 199–217. Springer (2011)

    Google Scholar 

  27. DiMaio, S., Hasser, C.: The da Vinci research interface. In: Proceedings of International Conference on Medical Image Computing and Computer Assisted Intervention 2008: Workshop-S5 Systems and Architectures for Computer Assisted Interventions (2008)

    Google Scholar 

  28. Dingwell, J.B., Mah, C.D., Mussa-Ivaldi, F.A.: Manipulating objects with internal degrees of freedom: Evidence for model-based control. J. Neurophysiol. 88, 222–235 (2002)

    Article  Google Scholar 

  29. Dingwell, J.B., Smallwood, R.F., Cusumano, J.P.: Trial-to-trial dynamics and learning in a generalized, redundant reaching task. J. Neurophysiol. 109, 225–237 (2013)

    Article  Google Scholar 

  30. Ericsson, K.A.: Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad. Med. 79, S70–S81 (2004)

    Article  Google Scholar 

  31. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429–433 (2002)

    Article  Google Scholar 

  32. Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008)

    Article  Google Scholar 

  33. Fergus, P., Haggerty, J., Taylor, M., Bracegirdle, L.: Towards a whole body sensing platform for healthcare applications. In: Whole Body Interaction, pp 135–149. Springer (2011)

    Google Scholar 

  34. Fernandes, H.L., Albert, M.V., Kording, K.P.: Measuring generalization of visuomotor perturbations in wrist movements using mobile phones. PLoS ONE 6, e20290 (2011)

    Article  Google Scholar 

  35. Finnegan, K.T., Meraney, A.M., Staff, I., Shichman, S.J.: da Vinci skills simulator construct validation study: correlation of prior robotic experience with overall score and time score simulator performance. Urology 80, 330–336 (2012)

    Article  Google Scholar 

  36. Fitts, P.M.: The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391 (1954)

    Article  Google Scholar 

  37. Flanagan, J.R., Beltzner, M.A.: Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nat. Neurosci. 3, 737–741 (2000)

    Article  Google Scholar 

  38. Flash, T., Hogan, N.: The coordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985)

    Article  Google Scholar 

  39. Flash, T., Meirovitch, Y., Barliya, A.: Models of human movement: trajectory planning and inverse kinematics studies. Robot. Auton. Syst. 61, 330–339 (2013)

    Article  Google Scholar 

  40. Franklin, D.W., Wolpert, D.M.: Computational mechanisms of sensorimotor control. Neuron 72, 425–442 (2011)

    Article  Google Scholar 

  41. Fuji, K., Salerno, A., Kumuthan, S., Kwok, K.W., Shetty, K., Yang, G.Z.: Gaze contingent cartesian control of a robotic arm for laparoscopic surgery. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2013)

    Google Scholar 

  42. Gallagher, A., McClure, N., McGuigan, J., Ritchie, K., Sheehy, N.: An ergonomic analysis of the fulcrum effect in the acquisition of endoscopic skills. Endoscopy 30, 617–620 (1998)

    Article  Google Scholar 

  43. Gallagher, A.G., Satava, R.M., Shorten, G.D.: Measuring surgical skill: a rapidly evolving scientific methodology. Surg. Endosc. 1–5 (2013)

    Google Scholar 

  44. Ganel, T., Goodale, M.A.: Visual control of action but not perception requires analytical processing of object shape. Nature 426, 664–667 (2003)

    Article  Google Scholar 

  45. Gibo, T.L., Bastian, A.J., Okamura, A.M.: Grip force control during virtual object interaction: effect of force feedback, accuracy demands, and training. Submitted (2013)

    Google Scholar 

  46. Gomi, H., Osu, R.: Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J. Neurosci. 18, 8965–8978 (1998)

    Article  Google Scholar 

  47. Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992)

    Article  Google Scholar 

  48. Guthart, G.S., Salisbury, Jr. J.K.: The IntuitiveTM telesurgery system: overview and application. In: 2000 Proceedings ICRA’00 IEEE International Conference on Robotics and Automation, vol. 1, pp. 618–621. IEEE (2000)

    Google Scholar 

  49. Hung, A.J., Jayaratna, I.S., Teruya, K., Desai, M.M., Gill, I.S., Goh, A.C.: Comparative assessment of three standardized robotic surgery training methods. BJU Int. (2013)

    Google Scholar 

  50. Hung, A.J., Zehnder, P., Patil, M.B., Cai, J., Ng, C.K., Aron, M., Gill, I.S., Desai, M.M.: Face, content and construct validity of a novel robotic surgery simulator. J. Urol. 186, 1019–1025 (2011)

    Article  Google Scholar 

  51. Intuitive Surgical, I.: (2013)

    Google Scholar 

  52. Johansson, R.S., Flanagan, J.R.: Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009)

    Google Scholar 

  53. Jones, D.B., Brewer, J.D., Soper, N.J.: The influence of three-dimensional video systems on laparoscopic task performance. Surg. Laparosc. Endosc. Percutaneous Tech. 6, 191–197 (1996)

    Article  Google Scholar 

  54. Judkins, T.N., Oleynikov, D., Stergiou, N.: Objective evaluation of expert and novice performance during robotic surgical training tasks. Surg. Endosc. 23, 590–597 (2009)

    Article  Google Scholar 

  55. Kandel, E.R., Schwartz, J.H., Jessel, T.M.: Principles of Neural Science. McGraw-Hill, New York (2000)

    Google Scholar 

  56. Karniel, A.: Open questions in computational motor control. J. Integr. Neurosci. 10, 385–411 (2011)

    Article  Google Scholar 

  57. Kenney, P.A., Wszolek, M.F., Gould, J.J., Libertino, J.A., Moinzadeh, A.: Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology 73, 1288–1292 (2009)

    Article  Google Scholar 

  58. Kluzik, J., Diedrichsen, J., Shadmehr, R., Bastian, A.J.: Reach adaptation: what determines whether we learn an internal model of the tool or adapt the model of our arm? J. Neurophysiol. 100, 1455–1464 (2008)

    Article  Google Scholar 

  59. Kording, K.: Decision theory: what “should” the nervous system do? Science 318, 606–610 (2007)

    Article  Google Scholar 

  60. Kording, K.P., Wolpert, D.M.: Bayesian integration in sensorimotor learning. Nature 427, 244–247 (2004)

    Article  Google Scholar 

  61. Kording, K.P., Wolpert, D.M.: Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10, 319–326 (2006)

    Article  Google Scholar 

  62. Kowalczyk, K.J., Levy, J.M., Caplan, C.F., Lipsitz, S.R., Yu H-y, GuX, Hu, J.C.: Temporal national trends of minimally invasive and retropubic radical prostatectomy outcomes from 2003 to 2007: results from the 100% medicare sample. Eur. Urol. 61, 803–809 (2012)

    Article  Google Scholar 

  63. Krakauer, J.W., Mazzoni, P.: Human sensorimotor learning: adaptation, skill, and beyond. Curr. Opin. Neurobiol. 21, 636–644 (2011)

    Article  Google Scholar 

  64. Krakauer, J.W., Pine, Z.M., Ghilardi, M.-F., Ghez, C.: Learning of visuomotor transformations for vectorial planning of reaching trajectories. J. Neurosci. 20, 8916–8924 (2000)

    Article  Google Scholar 

  65. Krebs, H.I., Dipietro, L., Levy-Tzedek, S., Fasoli, S., Rykman-Berland, A., Zipse, J., Fawcett, J., Stein, J., Poizner, H., Lo, A., Volpe, B., Hogan, N.: A paradigm shift for rehabilitation robotics. Eng. Med. Biol. Mag. IEEE 27, 61–70 (2008)

    Article  Google Scholar 

  66. Kuschel, M., Di Luca, M., Buss, M., Klatzky, R.L.: Combination and Integration in the perception of visual-haptic compliance information. IEEE Trans. Haptics 3, 234–244 (2010)

    Article  Google Scholar 

  67. Latash, M.L., Scholz, J.P., Schöner, G.: Toward a new theory of motor synergies. Mot. Control 11, 276–308 (2007)

    Article  Google Scholar 

  68. Leib, R., Karniel, A.: Minimum acceleration with constraints of center of mass: a unified model for arm movements and object manipulation. J. Neurophysiol. 108, 1646–1655 (2012)

    Article  Google Scholar 

  69. Lin, H., Shafran, I., Yuh, D., Hager, G.: Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput. Aided Surg. 11, 220–230 (2006)

    Article  Google Scholar 

  70. Liss, M.A., McDougall, E.M.: Robot. Surg. Simulat. Cancer J. 19, 124–129 (2013)

    Google Scholar 

  71. Lohse, K.R., Jones, M., Healy, A.F., Sherwood, D.E.: The Role of Attention in Motor Control (2013)

    Google Scholar 

  72. Lum, M.J.H., Friedman, D.C.W., Sankaranarayanan, G., King, H., Fodero, K., Leuschke, R., Hannaford, B., Rosen, J., Sinanan, M.N.: The RAVEN: design and validation of a telesurgery system. Int. J. Robot. Res. 28, 1183–1197 (2009)

    Article  Google Scholar 

  73. Lyons, C., Goldfarb, D., Jones, S.L., Badhiwala, N., Miles, B., Link, R., Dunkin, B.J.: Which skills really matter? Proving face, content, and construct validity for a commercial robotic simulator. Surg. Endosc. 1–11 (2013)

    Google Scholar 

  74. Maoz, U., Portugaly, E., Flash, T., Weiss, Y.: Noise and the two-thirds power law. Advanc. Neural Informat. Process. Syst. 851–858 (2005)

    Google Scholar 

  75. Markram, H.: The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)

    Article  Google Scholar 

  76. Martin, T.A., Keating, J.G., Goodkin, H.P., Bastian, A.J., Thach, W.T.: Throwing while looking through prisms. Brain 119, 1183–1198 (1996)

    Article  Google Scholar 

  77. Mawase, F., Karniel, A.: Evidence for predictive control in lifting series of virtual objects. Exp. Brain Res. 203, 447–452 (2010)

    Article  Google Scholar 

  78. McDougall, E.M.: Validation of surgical simulators. J. Endourol. 21, 244–247 (2007)

    Article  Google Scholar 

  79. McMahan, W., Gewirtz, J., Standish, D., Martin, P., Kunkel, J.A., Lilavois, M., Wedmid, A., Lee, D.I., Kuchenbecker, K.J.: Tool contact acceleration feedback for telerobotic surgery. IEEE Trans. Haptics 4, 210–220 (2011)

    Article  Google Scholar 

  80. Megali, G., Sinigaglia, S., Tonet, O., Dario, P.: Modelling and evaluation of surgical performance using hidden Markov models. IEEE Trans. Biomed. Eng. 53, 1911–1919 (2006)

    Article  Google Scholar 

  81. Morasso, P.: Spatial control of arm movements. Exp. Brain Res. 42, 223–227 (1981)

    Article  Google Scholar 

  82. Müller, H., Sternad, D.: Decomposition of variability in the execution of goal-oriented tasks: three components of skill improvement. J. Exp. Psychol. Hum. Percept. Perform. 30, 212–233 (2004)

    Article  Google Scholar 

  83. Mussa-Ivaldi, F.A., Hogan, N., Bizzi, E.: Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 5, 2732–2743 (1985)

    Article  Google Scholar 

  84. Mylonas, G.P., Darzi, A., Zhong Yang, G.: Gaze-contingent control for minimally invasive robotic surgery. Comput. Aided Surg. 11, 256–266 (2006)

    Article  Google Scholar 

  85. Mylonas, G.P., Kwok, K.-W., Darzi, A., Yang, G.-Z.: Gaze-contingent motor channelling and haptic constraints for minimally invasive robotic surgery. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2008, pp. 676–683. Springer (2008)

    Google Scholar 

  86. Mylonas, G.P., Stoyanov, D., Deligianni, F., Darzi, A., Yang, G.-Z.: Gaze-contingent soft tissue deformation tracking for minimally invasive robotic surgery. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2005, pp. 843–850. Springer (2005)

    Google Scholar 

  87. Narazaki, K., Oleynikov, D., Stergiou, N.: Objective assessment of proficiency with bimanual inanimate tasks in robotic laparoscopy. J. Laparoendosc. Adv. Surg. Tech. 17, 47–52 (2007)

    Article  Google Scholar 

  88. Nisky, I., Hsieh, M.H., Okamura, A.M.: The Effect of a robot-assisted surgical system on the kinematics of user movements. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6257–6260. Osaka, Japan (2013)

    Google Scholar 

  89. Nisky, I., Hsieh, M.H., Okamura, A.M.: A framework for analysis of surgeon arm posture variability in robot-assisted surgery. IEEE International Conference on Robotics and Automation, pp. 245–251. Karlsruhe, Germany (2013)

    Google Scholar 

  90. Nisky, I., Hsieh, M.H., Okamura, A.M.: Uncontrolled manifold analysis of arm joint angle variability during robotic teleoperation and freehand movement of surgeons and novices. IEEE Trans. Biomed. Eng. 61, 2869–2881 (2014)

    Article  Google Scholar 

  91. Nisky, I., Okamura, A.M., Hsieh, M.H.: Effect of robotic manipulators on movements of novices and surgeons. Surg. Endosc. 28, 2145–2158 (2014)

    Article  Google Scholar 

  92. Nisky, I., Patil, S., Hsieh, M.H., Okamura, A.M.: Kinematic analysis of motor performance in robot-assisted surgery: a preliminary study. In: Medicine Meets Virtual Reality (Studies in Health Technology and Information), vol. 184, pp. 302–308. San Diego (2013)

    Google Scholar 

  93. Nisky, I., Pressman, A., Pugh, C.M., Mussa-Ivaldi, F.A., Karniel, A.: Perception and action in teleoperated needle insertion. IEEE Trans. Haptics 4, 155–166 (2011)

    Article  Google Scholar 

  94. Noonan, D.P., Mylonas, G.P., Shang, J., Payne, C.J., Darzi, A., Yang, G.-Z.: Gaze contingent control for an articulated mechatronic laparoscope. In: 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 759–764. IEEE (2010)

    Google Scholar 

  95. Okamura, A.M.: Haptic feedback in robot-assisted minimally invasive surgery. Curr. Opin. Urol. 19, 102 (2009)

    Article  Google Scholar 

  96. Pressman, A., Nisky, I., Karniel, A., Mussa-Ivaldi, F.A.: Probing virtual boundaries and the perception of delayed stiffness. Adv. Robot. 22, 119–140 (2008)

    Article  Google Scholar 

  97. Provancher, W.R., Cutkosky, M.R., Kuchenbecker, K.J., Niemeyer, G.: Contact location display for haptic perception of curvature and object motion. Int. J. Robot. Res. 24, 691–702 (2005)

    Article  Google Scholar 

  98. Qadan, M., Curet, M.J., Wren, S.M.: The evolving application of single‐port robotic surgery in general surgery. J. Hepato-Biliary-Pancreatic Sci. (2013)

    Google Scholar 

  99. Quek, Z.F., Schorr, S., Nisky, I., Okamura, A.M., Provancher, W.: Sensory augmentation of virtual stiffness using finger pad skin stretch. IEEE World Haptics Conference, pp. 467–472. Daejeon, Korea (2013)

    Google Scholar 

  100. Reinkensmeyer, D., Wynne, J.H., Harkema, S.J. A robotic tool for studying locomotor adaptation and rehabilitation. In: 2002 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society EMBS/BMES Conference on Engineering in Medicine and Biology, 2002 Proceedings of the Second Joint, vol. 3, pp. 2353–2354, vol. 2353 (2002)

    Google Scholar 

  101. Reis, J., Schambra, H.M., Cohen, L.G., Buch, E.R., Fritsch, B., Zarahn, E., Celnik, P.A., Krakauer, J.W.: Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. 106, 1590–1595 (2009)

    Article  Google Scholar 

  102. Reyes, J.M., Smaldone, M.C., Uzzo, R.G., Viterbo, R.: Current status of robot-assisted partial nephrectomy. Curr. Urol. Rep. 13, 24–37 (2012)

    Article  Google Scholar 

  103. Robotic Training Network (2013)

    Google Scholar 

  104. Rosen, J., Brown, J.D., Chang, L., Sinanan, M.N., Hannaford, B.: Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model. IEEE Trans. Biomed. Eng. 53, 399–413 (2006)

    Article  Google Scholar 

  105. Satava, R., Smith, R., Patel, V.: Fundamentals of Robotic Surgery: Outcomes Measures and Curriculum Development. In: SLS Boston, MA (2012)

    Google Scholar 

  106. Scheidt, R.A., Ghez, C.: Separate adaptive mechanisms for controlling trajectory and final position in reaching. J. Neurophysiol. 98, 3600–3613 (2007)

    Article  Google Scholar 

  107. Scholz, J.P., Schoner, G.: The uncontrolled manifold concept: identifying control variables for a functional task. Exp. Brain Res. 126, 289–306 (1999)

    Article  Google Scholar 

  108. Schorr, S., Quek, Z.F., Romano, R., Nisky, I., Provancher, W., Okamura, A.M.: Sensory substitution via cutaneous skin stretch feedback. IEEE International Conference on Robotics and Automation, pp. 2333–2338. Karlsruhe, Germany (2013)

    Google Scholar 

  109. Scott, S.H.: Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 5, 532–546 (2004)

    Article  Google Scholar 

  110. Shadmehr, R.: Computational approaches to motor control. In: R. S.L., (ed.) Encyclopedia of Neuroscience, vol. 3, pp 9–17. Oxford: Academic Press

    Google Scholar 

  111. Shadmehr, R., Mussa-Ivaldi, F.A.: Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994)

    Article  Google Scholar 

  112. Shadmehr, R., Mussa-Ivaldi, S.: Biological Learning and Control: How the Brain Builds Representations, Predicts Events, and Makes Decisions. MIT Press (2012)

    Google Scholar 

  113. Shadmehr, R., Smith, M.A., Krakauer, J.W.: Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33, 89–108 (2010)

    Article  Google Scholar 

  114. Shadmehr, R., Wise, S.P.: The Computational Neurobiology of Reaching and Pointing: A Foundation for Motor Learning. MIT Press (2005)

    Google Scholar 

  115. Shmuelof, L., Krakauer, J.W., Mazzoni, P.: How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. J. Neurophysiol. 108, 578–594 (2012)

    Article  Google Scholar 

  116. Smith, R., Patel, V., Chauhan, S., Satava, R.: Fundamentals of robotic surgery: outcomes measures and curriculum development. In: NextMed/MMVR 20 San Diego, CA (2013)

    Google Scholar 

  117. Svinin, M., Goncharenko, I., Zhi-Wei, L., Hosoe, S.: Reaching movements in dynamic environments: how do we move flexible objects? IEEE Trans. Rob. 22, 724–739 (2006)

    Article  Google Scholar 

  118. Takahashi, C.D., Scheidt, R.A., Reinkensmeyer, D.J.: Impedance control and internal model formation when reaching in a randomly varying dynamical environment. J. Neurophysiol. 86, 1047–1051 (2001)

    Article  Google Scholar 

  119. Tausch, T.J., Kowalewski, T.M., White, L.W., McDonough, P.S., Brand, T.C., Lendvay, T.S.: Content and construct validation of a robotic surgery curriculum using an electromagnetic instrument tracker. J. Urol. 188, 919–923 (2012)

    Article  Google Scholar 

  120. Tewari, A., Sooriakumaran, P., Bloch, D.A., Seshadri-Kreaden, U., Hebert, A.E., Wiklund, P.: Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubic, laparoscopic, and robotic prostatectomy. Eur. Urol. 62, 1–15 (2012)

    Article  Google Scholar 

  121. Thoroughman, K.A., Shadmehr, R.: Learning of action through adaptive combination of motor primitives. Nature 407, 742–747 (2000)

    Article  Google Scholar 

  122. Todorov, E., Jordan, M.I.: Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002)

    Article  Google Scholar 

  123. Touwen, B.C.L.: How normal is variable, or how variable is normal? Early Human Dev. 34, 1–12 (1993)

    Article  Google Scholar 

  124. Trinh, Q.-D., Sammon, J., Sun, M., Ravi, P., Ghani, K.R., Bianchi, M., Jeong, W., Shariat, S.F., Hansen, J., Schmitges, J.: Perioperative outcomes of robot-assisted radical prostatectomy compared with open radical prostatectomy: results from the nationwide inpatient sample. Eur. Urol. 61, 679–685 (2012)

    Article  Google Scholar 

  125. Tsuji, T., Morasso, P., Goto, K., Ito, K.: Human hand impedance characteristics during maintained posture. Biol. Cybern. 72, 475–485 (1995)

    Article  MATH  Google Scholar 

  126. Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement—minimum torque-change model. Biol. Cybern. 61, 89–101 (1989)

    Article  Google Scholar 

  127. Vickers, J.N.: Perception, cognition and decision training: the quiet eye in action. Human Kinetics (2007)

    Google Scholar 

  128. Wilson, M., McGrath, J., Vine, S., Brewer, J., Defriend, D., Masters, R.: Psychomotor control in a virtual laparoscopic surgery training environment: gaze control parameters differentiate novices from experts. Surg. Endosc. 24, 2458–2464 (2010)

    Article  Google Scholar 

  129. Wilson, M.R., Vine, S.J., Bright, E., Masters, R.S., Defriend, D., McGrath, J.S.: Gaze training enhances laparoscopic technical skill acquisition and multi-tasking performance: a randomized, controlled study. Surg. Endosc. 25, 3731–3739 (2011)

    Article  Google Scholar 

  130. Wolpert, D.M., Diedrichsen, J., Flanagan, J.R.: Principles of sensorimotor learning. Nat. Rev. Neurosci. 12, 739–751 (2011)

    Article  Google Scholar 

  131. Wolpert, D.M., Ghahramani, Z.: Computational principles of movement neuroscience. Nat. Neurosci. 3, 1212–1217 (2000)

    Article  Google Scholar 

  132. Woodworth, R.S.: Accuracy of voluntary movement. Psychol. Rev. Monogr. Suppl. 3, i–114 (1899)

    Article  Google Scholar 

  133. Yang, G.-Z., Mylonas, G.P., Kwok, K.-W., Chung, A.: Perceptual docking for robotic control. Med. Imag. Augment. Real. 21–30. Springer (2008)

    Google Scholar 

  134. Yang, J.-F., Scholz, J., Latash, M.: The role of kinematic redundancy in adaptation of reaching. Exp. Brain Res. 176, 54–69 (2007)

    Article  Google Scholar 

  135. Yarrow, K., Brown, P., Krakauer, J.W.: Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nat. Rev. Neurosci. 10, 585–597 (2009)

    Article  Google Scholar 

  136. Zago, M., McIntyre, J., Senot, P., Lacquaniti, F.: Visuo-motor coordination and internal models for object interception. Exp. Brain Res. 192, 571–604 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Myriam Curet for her valuable comments on the manuscript. IN was funded by the Marie Curie International Outgoing Fellowship, and the Weizmann Institute of Science National Postdoctoral Award for Advancement of Women in Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilana Nisky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jarc, A., Nisky, I. (2020). Application and Exploration of Sensorimotor Coordination Strategies in Surgical Robotics. In: Bonsignorio, F., Messina, E., del Pobil, A., Hallam, J. (eds) Metrics of Sensory Motor Coordination and Integration in Robots and Animals. Cognitive Systems Monographs, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-14126-4_3

Download citation

Publish with us

Policies and ethics