Skip to main content

Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels

  • Chapter
  • First Online:
Direct Mechanisms in Cholesterol Modulation of Protein Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1135))

Abstract

Inwardly rectifying potassium (Kir) channels play a variety of critical cellular roles including modulating membrane excitability in neurons, cardiomyocytes and muscle cells, and setting the resting membrane potential, heart rate, vascular tone, insulin release, and salt flow across epithelia. These processes are regulated by a variegated list of modulators. In particular, in recent years, cholesterol has been shown to modulate a growing number of Kir channels. Subsequent to the discovery that members of the Kir2 subfamily were down-regulated by cholesterol, we have shown that members of several other Kir subfamilies were also modulated by cholesterol. However, not all cholesterol sensitive Kir channels were down-regulated by cholesterol. Our recent studies focused on three Kir channels: Kir2.1 (IRK1), Kir3.2^ (GIRK2^) and Kir3.4* (GIRK4*). Among these, Kir2.1 was down-regulated by cholesterol whereas Kir3.2^ and Kir3.4* were both up-regulated by cholesterol. Despite the opposite impact of cholesterol on these Kir3 channels compared to Kir2.1, putative cholesterol binding sites in all three channels were identified in equivalent transmembrane domains. Interestingly, however, there are intriguing differences in the specific residues that interact with the cholesterol molecule in these Kir channels. Here we compare and contrast the molecular characteristics of the putative cholesterol binding sites in the three channels, and discuss the potential implications of the differences for the impact of cholesterol on ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maguy A, Hebert TE, Nattel S. Involvement of lipid rafts and caveolae in cardiac ion channel function. Cardiovasc Res. 2006;69:798–807.

    Article  CAS  PubMed  Google Scholar 

  2. Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V. Cholesterol and ion channels. Subcell Biochem. 2010;51:509–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rosenhouse-Dantsker A, Mehta D, Levitan I. Regulation of ion channels by membrane lipids. Compr Physiol. 2012;2:3168.

    Google Scholar 

  4. Chan KW, Sui JL, Vivaudou M, Logothetis DE. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc Natl Acad Sci U S A. 1996;93:14193–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM. Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature. 1997;387:179–83.

    Article  CAS  PubMed  Google Scholar 

  6. Rosenhouse-Dantsker A, Leal-Pinto E, Logothetis DE, Levitan I. Comparative analysis of cholesterol sensitivity of Kir channels: Role of the CD loop. Channels. 2010;4:63–6.

    Article  CAS  PubMed  Google Scholar 

  7. Romanenko VG, Fang Y, Byfield F, Travis AJ, Vandenberg CA, Rothblat GH, Levitan I. Cholesterol sensitivity and lipid raft targeting of Kir2.1 channels. Biophys J. 2004;87:3850–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Deng W, Bukiya AN, Rodríguez-Menchaca AA, Zhang Z, Baumgarten CM, Logothetis DE, Levitan I, Rosenhouse-Dantsker A. Hypercholesterolemia induces up-regulation of KACh cardiac currents via a mechanism independent of phosphatidylinositol 4,5-bisphosphate and Gβγ. J Biol Chem. 2012;287:4925–35.

    Article  CAS  PubMed  Google Scholar 

  9. Balajthy A, Hajdu P, Panyi G, Varga Z. Sterol regulation of voltage-gated K+ channels. Curr Top Membr. 2017;80:255–92.

    Article  PubMed  Google Scholar 

  10. Bolotina V, Omelyanenko V, Heyes B, Ryan U, Bregestovski P. Variations of membrane cholesterol alter the kinetics of Ca2+-dependent K+ channels and membrane fluidity in vascular smooth muscle cells. Pflugers Arch. 1989;415:262–8.

    Article  CAS  PubMed  Google Scholar 

  11. Dopico AM, Bukiya AN, Singh AK. Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol. Pharmacol Ther. 2012;135:133–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wu CC, Su MJ, Chi JF, Chen WJ, Hsu HC, Lee YT. The effect of hypercholesterolemia on the sodium inward currents in cardiac myocyte. J Mol Cell Cardiol. 1995;27:1263–9.

    Article  CAS  PubMed  Google Scholar 

  13. Amsalem M, Poilbout C, Ferracci G, Delmas P, Padilla F. Membrane cholesterol depletion as a trigger of Nav1.9 channel-mediated inflammatory pain. EMBO J. 2018;37(8):e97349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Toselli M, Biella G, Taglietti V, Cazzaniga E, Parenti M. Caveolin-1 expression and membrane cholesterol content modulate N-type calcium channel activity in NG108-15 cells. Biophys J. 2005;89:2443–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Levitan I, Christian AE, Tulenko TN, Rothblat GH. (2000) Membrane cholesterol content modulates activation of volume-regulated anion current in bovine endothelial cells. J Gen Physiol. 2000;115:405–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shlyonsky VG, Mies F, Sariban-Sohraby S. Epithelial sodium channel activity in detergent-resistant membrane microdomains. Am J Physiol Renal Physiol. 2003;284:F182–8.

    Article  CAS  PubMed  Google Scholar 

  17. Awayda MS, Awayda KL, Pochynyuk O, Bugaj V, Stockand JD, Ortiz RM. Acute cholesterol-induced anti-natriuretic effects: role of epithelial Na+ channel activity, protein levels, and processing. J Biol Chem. 2011;286:1683–95.

    Article  CAS  PubMed  Google Scholar 

  18. Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS. Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem. 2000;275:11934–42.

    Article  CAS  PubMed  Google Scholar 

  19. Chubinskiy-Nadezhdin VI, Negulyaev YA, Morachevskaya EA. Cholesterol depletion-induced inhibition of stretch-activated channels is mediated via actin rearrangement. Biochem Biophys Res Commun. 2011;412:80–5.

    Article  CAS  PubMed  Google Scholar 

  20. Bukiya AN, Durdagi S, Noskov S, Rosenhouse-Dantsker A. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus. J Biol Chem. 2017;292:6135–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yi A, Lin Y-F, Jan YN, Jan LY. Yeast screen for constitutively active mutant G protein–activated potassium channels. Neuron. 2001;29:657–67.

    Article  CAS  PubMed  Google Scholar 

  22. Vivaudou M, Chan KW, Sui JL, Jan LY, Reuveny E, Logothetis DE. Probing the G-protein regulation of GIRK1 and GIRK4, the two subunits of the KACh channel, using functional homomeric mutants. J Biol Chem. 1997;272:31553–60.

    Article  CAS  PubMed  Google Scholar 

  23. Lundbaek JA, Andersen OS. Spring constants for channel-induced lipid bilayer deformations estimates using gramicidin channels. Biophys J. 1999;76:889–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lundbaek JA, Birn P, Hansen AJ, Andersen OS. Membrane stiffness and channel function. Biochemistry. 1996;35:3825–30.

    Article  CAS  PubMed  Google Scholar 

  25. Rosenhouse-Dantsker A. Insights into the molecular requirements for cholesterol binding to ion channels. Curr Top Membr. 2017;80:187–208.

    Article  PubMed  Google Scholar 

  26. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 2007;318:1258–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wada T, Shimono K, Kikukawa T, Hato M, Shinya N, Kim SY, Kimura-Someya T, Shirouzu M, Tamogami J, Miyauchi S, Jung KH, Kamo N, Yokoyama S. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga. J Mol Biol. 2011;411(5):986–98.

    Article  CAS  PubMed  Google Scholar 

  28. Liu W, Wacker D, Gati C, Han GW, James D, Wang D, Nelson G, Weierstall U, Katritch V, Barty A, Zatsepin NA, Li D, Messerschmidt M, Boutet S, Williams GJ, Koglin JE, Seibert MM, Wang C, Shah ST, Basu S, Fromme R, Kupitz C, Rendek KN, Grotjohann I, Fromme P, Kirian RA, Beyerlein KR, White TA, Chapman HN, Caffrey M, Spence JC, Stevens RC, Cherezov V. Serial femtosecond crystallography of G protein-coupled receptors. Science. 2013;342:1521–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK. Structural insights into μ-opioid receptor activation. Nature. 2015;524(7565):315–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cheng RKY, Segala E, Robertson N, Deflorian F, Doré AS, Errey JC, Fiez-Vandal C, Marshall FH, Cooke RM. Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity. Structure. 2017;25:1275–85.

    Article  CAS  PubMed  Google Scholar 

  31. Che T, Majumdar S, Zaidi SA, Ondachi P, McCorvy JD, Wang S, Mosier PD, Uprety R, Vardy E, Krumm BE, Han GW, Lee MY, Pardon E, Steyaert J, Huang XP, Strachan RT, Tribo AR, Pasternak GW, Carroll FI, Stevens RC, Cherezov V, Katritch V, Wacker D, Roth BL. Structure of the nanobody-stabilized active state of the kappa opioid receptor. Cell. 2018;172:55–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Penmatsa A, Wang KH, Gouaux E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature. 2013;503:85–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coleman JA, Green EM, Gouaux E. X-ray structures and mechanism of the human serotonin transporter. Nature. 2016;532:334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shinoda T, Ogawa H, Cornelius F, Toyoshima C. Crystal structure of the sodium-potassium pump at 2.4 A resolution. Nature. 2009;459:446–50.

    Article  CAS  PubMed  Google Scholar 

  35. Marsh D, Barrantes FJ. Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata. Proc Natl Acad Sci U S A. 1978;75:4329–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jones OT, McNamee MG. Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry. 1988;27:2364–74.

    Article  CAS  PubMed  Google Scholar 

  37. Addona GH, Sandermann H Jr, Kloczewiak MA, Husain SS, Miller KW. Where does cholesterol act during activation of the nicotinic acetylcholine receptor? Biochim Biophys Acta. 1998;1370:299–309.

    Article  CAS  PubMed  Google Scholar 

  38. Barrantes FJ. Structural basis for lipid modulation of nicotinic acetylcholine receptor function. Brain Res Brain Res Rev. 2004;47:71–95.

    Article  CAS  PubMed  Google Scholar 

  39. Levitan I, Singh DK, Rosenhouse-Dantsker A. Cholesterol binding to ion channels. Front Physiol. 2014;5:65.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res. 2006;45:279–94.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Z, Tóth B, Szollosi A, Chen J, Csanády L. Structure of a TRPM2 channel in complex with Ca2+ explains unique gating regulation. eLife. 2018;7:e36409.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Romanenko VG, Rothblat GH, Levitan I. Modulation of endothelial inward rectifier K+ current by optical isomers of cholesterol. Biophys J. 2002;83:3211–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Addona GH, Sandermann H Jr, Kloczewiak MA, Miller KW. Low chemical specificity of the nicotinic acetylcholine receptor sterol activation site. Biochim Biophys Acta. 2003;1609:177–82.

    Article  CAS  PubMed  Google Scholar 

  44. Singh DK, Rosenhouse-Dantsker A, Nichols CG, Enkvetchakul D, Levitan I. Direct regulation of prokaryotic Kir channel by cholesterol. J Biol Chem. 2009;284:30727–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. D’Avanzo N, Hyrc K, Enkvetchakul D, Covey DF, Nichols CG. Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol. PLoS One. 2011;6:e19393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bukiya AN, Belani JD, Rychnovsky S, Dopico AM. Specificity of cholesterol and analogs to modulate BK channels points to direct sterol-channel protein interactions. J Gen Physiol. 2011;137:93–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Picazo-Juárez G, Romero-Suárez S, Nieto-Posadas A, Llorente I, Jara- Oseguera A, Briggs M, McIntosh TJ, Simon SA, Ladrón-de-Guevara E, Islas LD, Rosenbaum T. Identification of a binding motif in the S5 helix that confers cholesterol sensitivity to the TRPV1 ion channel. J Biol Chem. 2011;286:24966–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Covey DF. ent-Steroids. Novel tools for studies of signaling pathways. Steroids. 2009;74:577–85.

    Article  CAS  PubMed  Google Scholar 

  49. Baier CJ, Fantini J, Barrantes FJ. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep. 2011;1:69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins. An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol. 2013;4:31.

    PubMed  PubMed Central  Google Scholar 

  51. Bukiya AN, Rosenhouse-Dantsker A. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2. Biochim Biophys Acta Biomembr. 2017;1859:1233–41.

    Article  CAS  PubMed  Google Scholar 

  52. Rosenhouse-Dantsker A, Noskov S, Durdagi S, Logothetis DE, Levitan I. Identification of novel cholesterol-binding regions in Kir2 channels. J Biol Chem. 2013;288:31154–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev. 2010;90:291–366.

    Article  CAS  PubMed  Google Scholar 

  54. Reimann F, Ashcroft FM. Inwardly rectifying potassium channels. Curr Opin Cell Biol. 1999;11:503–8.

    Article  CAS  PubMed  Google Scholar 

  55. Bichet D, Haass FA, Jan LY. Merging functional studies with structures of inward-rectifier K+ channels. Nat Rev Neurosci. 2003;4:957–67.

    Article  CAS  PubMed  Google Scholar 

  56. Kubo Y, Adelman JP, Clapham DE, Jan LY, Karschin A, Kurachi Y, Lazdunski M, Nichols CG, Seino S, Vandenberg CA. International Union of Pharmacology. LIV. Nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev. 2005;57:509–26.

    Article  CAS  PubMed  Google Scholar 

  57. Nichols C, Lopatin A. Inward rectifier potassium channels. Annu Rev Physiol. 1997;59:268–77.

    Article  Google Scholar 

  58. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, et al. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature. 1993;362:31–8.

    Article  CAS  PubMed  Google Scholar 

  59. Dascal N, Schreibmayer W, Lim NF, Wang W, Chavkin C, DiMagno L, et al. Atrial G protein-activated K+ channel: Expression cloning and molecular properties. Proc Natl Acad Sci U S A. 1993;90:10235–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kubo Y, Baldwin TJ, Jan YN, Jan LY. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature. 1993;362:127–33.

    Article  CAS  PubMed  Google Scholar 

  61. Nishida M, Cadene M, Chait BT, MacKinnon R. Crystal structure of a Kir3.1- prokaryotic Kir channel chimera. EMBO J. 2007;26:4005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tao X, Avalos JL, Chen J, MacKinnon R. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science. 2009;326:1668–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Whorton MR, MacKinnon R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell. 2011;147:199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li N, Wu JX, Ding D, Cheng J, Gao N, Chen L. Structure of a Pancreatic ATP-Sensitive Potassium Channel. Cell. 2017;168:101–10.

    Article  CAS  PubMed  Google Scholar 

  65. Lee KPK, Chen J, MacKinnon R. Molecular structure of human KATP in complex with ATP and ADP. Elife. 2017;6:e32481.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tikku S, Epshtein Y, Collins H, Travis AJ, Rothblat GH, Levitan I. Relationship between Kir2.1/Kir2.3 activity and their distributions between cholesterol-rich and cholesterol-poor membrane domains. Am J Physiol Cell Physiol. 2007;293:C440–50.

    Article  CAS  PubMed  Google Scholar 

  67. Chen X, Johnston D. Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons. J Neurosci. 2005;25:3787–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. VanDongen AM, Codina J, Olate J, Mattera R, Joho R, Birnbaumer L, Brown AM. Newly identified brain potassium channels gated by the guanine nucleotide binding protein Go. Science. 1988;242:1433–7.

    Article  CAS  PubMed  Google Scholar 

  69. Leaney JL. Contribution of Kir3.1, Kir3.2A and Kir3.2C subunits to native G protein-gated inwardly rectifying potassium currents in cultured hippocampal neurons. Eur J Neurosci. 2003;18:2110–8.

    Article  PubMed  Google Scholar 

  70. Slesinger PA, Patil N, Liao YJ, Jan YN, Jan LY, Cox DR. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron. 1996;16:321–31.

    Article  CAS  PubMed  Google Scholar 

  71. Inanobe A, Yoshimoto Y, Horio Y, Morishige KI, Hibino H, Matsumoto S, Tokunaga Y, Maeda T, Hata Y, Takai Y, Kurachi Y. Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J Neurosci. 1999;19:1006–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rubinstein M, Peleg S, Berlin S, Brass D, Keren-Raifman T, Dessauer CW, Ivanina T, Dascal N. Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma. J Physiol. 2009;587(Pt 14):3473–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Logothetis DE, Jin T, Lupyan D, Rosenhouse-Dantsker A. Phosphoinositide-mediated gating of inwardly rectifying K(+) channels. Pflugers Arch. 2007;455:83–95.

    Article  CAS  PubMed  Google Scholar 

  74. Hansen SB, Tao X, MacKinnon R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature. 2011;477:495–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schmidt MR, Stansfeld PJ, Tucker SJ, Sansom MS. Simulation-based prediction of phosphatidylinositol 4,5-bisphosphate binding to an ion channel. Biochemistry. 2013;52:279–81.

    Article  CAS  PubMed  Google Scholar 

  76. Yeagle PL. Non-covalent binding of membrane lipids to membrane proteins. Biochim Biophys Acta. 2014;1838:1548–59.

    Article  CAS  PubMed  Google Scholar 

  77. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EYT, Velasquez J, Kuhn P, Stevens RC. A specific cholesterol binding site is established by the 2.8Å structure of the human β-adrenergic receptor. Structure. 2008;16:897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S. Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature. 2012;485:321–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, Jzerman AP, Cherezov V, Stevens RC. Structural basis for allosteric regulation of GPCRs by sodium ions. Science. 2012;337:232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, McCorvy JD, Jiang Y, Chu M, Siu FY, Liu W, Xu HE, Cherezov V, Roth BL, Stevens RC. Structural features for functional selectivity at serotonin receptors. Science. 2013;340:615–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–7.

    Article  CAS  PubMed  Google Scholar 

  82. Singh AK, McMillan J, Bukiya AN, Burton B, Parrill AL, Dopico AM. Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+ (BK) channels. J Biol Chem. 2012;287:20509–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Epshtein Y, Chopra AP, Rosenhouse-Dantsker A, Kowalsky GB, Logothetis DE, Levitan I. Identification of cholesterol sensitive domain in the C-terminus of Kir2.1 channels. Proc Natl Acad Sci U S A. 2009;106:8055–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R. The open pore conformation of potassium channels. Nature. 2002;417:523–6.

    Article  CAS  PubMed  Google Scholar 

  85. Jin T, Peng L, Mirshahi T, Rohacs T, Chan KW, Sanchez R, Logothetis DE. The βγ subunits of G proteins gate a K+ channel by pivoted bending of a transmembrane segment. Mol Cell. 2002;10:469–81.

    Article  CAS  PubMed  Google Scholar 

  86. Rosenhouse-Dantsker A, Logothetis DE. New roles for a key glycine and its neighboring residue in potassium channel gating. Biophys J. 2006;91:2860–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rosenhouse-Dantsker A. Cholesterol-binding sites in GIRK channels: the devil is in the details. Lipid Insights. 2018;11:1178635317754071.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avia Rosenhouse-Dantsker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosenhouse-Dantsker, A. (2019). Cholesterol Binding Sites in Inwardly Rectifying Potassium Channels. In: Rosenhouse-Dantsker, A., Bukiya, A. (eds) Direct Mechanisms in Cholesterol Modulation of Protein Function. Advances in Experimental Medicine and Biology, vol 1135. Springer, Cham. https://doi.org/10.1007/978-3-030-14265-0_7

Download citation

Publish with us

Policies and ethics