Skip to main content

Asymmetric Dimethylation on Arginine (ADMA) of Histones in Development, Differentiation and Disease

  • Chapter
  • First Online:
The DNA, RNA, and Histone Methylomes

Part of the book series: RNA Technologies ((RNATECHN))

  • 1018 Accesses

Abstract

Among myriads of histone modifications known today, asymmetric dimethylation of arginines (ADMA) have been found to have important implications in transcriptional regulation of gene expression. These modifications influence organismal development, regulate cellular differentiation of multiple lineages and modulate pathogenesis of various disease forms such as cancer, metabolic disorders and drug addiction. In this chapter, we discuss roles of ADMA of histones mediated by different type I PRMTs in above mentioned physiological contexts and shed light on prospective therapeutic developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADMA:

Asymmetric dimethyl arginine

AMI:

Arginine methyltransferase inhibitor

AML:

Acute Myeloblastic Leukemia

AR:

Androgen receptor

BRG1:

Brahma-related gene-1

CaMKII:

Ca2+/calmodulin-dependent protein kinase II

CNC:

Cranial neural crest

CVD:

Cardiovascular diseases

DDAH:

Dimethylarginine dimethylaminohydrolase

DM1:

Type I Diabetes mellitus

E2:

Estradiol

EGFR:

Epidermal growth factor receptor

ER:

Estrogen receptor

GST-P:

Glutathione S-transferase placental form

HCC:

Hepatocellular carcinoma

MEF:

Mouse embryonic fibroblast

MEF2C:

Myocyte enhancer factor-2C

MMA:

Monomethyl arginine

MTA:

Methylthioadenosine

NAc:

Nucleus accumbens

NOS:

Nitric oxide synthase

Nrf2:

Nuclear factor erythroid 2-related factor 2

NS/PC:

Neural stem/precursor cells

OIS:

Oncogene induced senescence

PAD4:

Protein arginine deiminase 4

PAF1c:

Polymerase-Associated Factor 1 complex

PPAR-gamma:

Peroxisome proliferator activated receptor-gamma

PRMT:

Protein arginine methyltransferase

PSA:

Prostate specific antigen

SAM:

S-Adenosyl-l-Methionine

SDMA:

Symmetric dimethylarginine

SRC:

Steroid receptor coactivator

YY1:

Ying Yang 1

References

  • Al-Dhaheri M, Wu J, Skliris GP et al (2011) CARM1 is an important determinant of ERα-dependent breast cancer cell differentiation and proliferation in breast cancer cells. Cancer Res 71:2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida-Rios D, Graça I, Vieira FQ et al (2016) Histone methyltransferase PRMT6 plays an oncogenic role of in prostate cancer. Oncotarget 7:53018–53028

    Article  PubMed  PubMed Central  Google Scholar 

  • An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117:735

    CAS  PubMed  Google Scholar 

  • Baldwin RM, Morettin A, Paris G et al (2012) Alternatively spliced protein arginine methyltransferase 1 isoform PRMT1v2 promotes the survival and invasiveness of breast cancer cells. Cell Cycle 11:4597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin RM, Bejide M, Trinkle-Mulcahy L et al (2015) Identification of the PRMT1v1 and PRMT1v2 specific interactomes by quantitative mass spectrometry in breast cancer cells. Proteomics 15(13):2187

    Article  CAS  PubMed  Google Scholar 

  • Batut J, Duboé C, Vandel L (2011) The methyltransferases PRMT4/CARM1 and PRMT5 control differentially myogenesis in zebrafish. PLoS One 6:e25427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bauer UM, Daujat S, Nielsen SJ et al (2002) Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3:39–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what and why. Mol Cell 33:1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behera AK, Bhattacharya A, Vasudevan M et al (2018) p53 mediated regulation of coactivator associated arginine methyltransferase 1 (CARM1) expression is critical for suppression of adipogenesis. FEBS J 285:1730–1744

    Article  CAS  PubMed  Google Scholar 

  • Blythe SA, Cha SW, Tadjuidje E et al (2010) beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 19:220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Böger RH (2003) The emerging role of asymmetric dimethylarginine as a novel cardiovascular risk factor. Cardiovasc Res 59:824

    Article  PubMed  CAS  Google Scholar 

  • Bouchard C, Sahu P, Meixner M et al (2018) Genomic location of PRMT6-dependent H3R2 methylation is linked to the transcriptional outcome of associated genes. Cell Rep 24:3339–3352

    Article  CAS  PubMed  Google Scholar 

  • Casadio F, Lu X, Pollock SB et al (2013) H3R42me2a is a histone modification with positive transcriptional effects. Proc Natl Acad Sci USA 110:14894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang B, Chen Y, Zhao Y et al (2007) JMJD6 is a histone arginine demethylase. Science 318:444

    Article  CAS  PubMed  Google Scholar 

  • Chen SL, Loffler KA, Chen D et al (2002) The coactivator-associated arginine methyltransferase is necessary for muscle differentiation: CARM1 coactivates myocyte enhancer factor-2. J Biol Chem 277:4324

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Niroomand F, Liu Z et al (2006) Expression of nitric oxide related enzymes in coronary heart disease. Basic Res Cardiol 101:346

    Article  CAS  PubMed  Google Scholar 

  • Cheng D, Bedford MT (2011) Xenoestrogens regulate the activity of arginine methyltransferases. Chembiochem 12:323

    Article  CAS  PubMed  Google Scholar 

  • Cheng D, Yadav N, King RW, Swanson MS, Weinstein EJ, Bedford MT (2004) Small molecule regulators of protein arginine methyltransferases. J Biol Chem 279(23):23892–23899

    Article  CAS  PubMed  Google Scholar 

  • Cheng D, Valente S, Castellano S et al (2011) Novel 3,5-bis(bromohydroxybenzylidene)piperidin-4-ones as coactivator-associated arginine methyltransferase 1 inhibitors: enzyme selectivity and cellular activity. J Med Chem 54:4928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung N, Fung TK, Zeisig BB et al (2016) Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute myeloid leukemia. Cancer Cell 29:32–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JH, Jang AR, Kim DI et al (2018) PRMT1 mediates RANKL-induced osteoclastogenesis and contributes to bone loss in ovariectomized mice. Exp Mol Med 50:111

    Article  PubMed Central  CAS  Google Scholar 

  • Chuang CY, Chang CP, Lee YJ et al (2017) PRMT1 expression is elevated in head and neck cancer and inhibition of protein arginine methylation by adenosine dialdehyde or PRMT1 knockdown downregulates proliferation and migration of oral cancer cells. Oncol Rep 38:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Damez-Werno DM, Sun H, Scobie KN et al (2016) Histone arginine methylation in cocaine action in the nucleus accumbens. Proc Natl Acad Sci USA 113:9623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daujat S, Bauer UM, Shah V et al (2002) Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12:2090

    Article  CAS  PubMed  Google Scholar 

  • Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585:2024

    Article  PubMed  CAS  Google Scholar 

  • Di Lorenzo A, Yang Y, Macaluso M et al (2014) A gain-of-function mouse model identifies PRMT6 as a NF-κB coactivator. Nucleic Acids Res 42:8297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drew AE, Moradei O, Jacques SL et al (2017) Identification of a CARM1 inhibitor with potent in vitro and in vivo activity in preclinical models of multiple myeloma. Sci Rep 7:17993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eram MS, Shen Y, Szewczyk M et al (2016) A potent, selective, and cell-active inhibitor of human type I protein arginine methyltransferases. ACS Chem Biol 11:772–781

    Article  CAS  PubMed  Google Scholar 

  • Ersoy B, Eroğlu N, Çetin M et al (2018) Asymmetric dimethylarginine levels and diabetes duration: relationship with measures of subclinical atherosclerosis and cardiac function in children and adolescents with type 1 diabetes. Diab Vasc Dis Res 15:196–203

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Wang J, Asher S et al (2011) Histone H4 acetylation differentially modulates arginine methylation by an in Cis mechanism. J Biol Chem 286:20323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frietze S, Lupien M, Silver PA et al (2008) CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res 68:301

    Article  CAS  PubMed  Google Scholar 

  • Fulton MD, Zhang J, He M et al (2017) Intricate effects of α-amino and lysine modifications on arginine methylation of the N-terminal tail of histone H4. Biochemistry 56:3539–3548

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Zhao Y, Zhang J et al (2016) The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep 6:19874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gou Q, He S, Zhou Z (2017) Protein arginine N-methyltransferase 1 promotes the proliferation and metastasis of hepatocellular carcinoma cells. Tumour Biol 39:1010428317691419

    Article  PubMed  Google Scholar 

  • Gou Y, Li J, Wu J et al (2018a) Prmt1 regulates craniofacial bone formation upstream of Msx1. Mech Dev 152:13–20

    Article  CAS  PubMed  Google Scholar 

  • Gou Y, Li J, Jackson-Weaver O et al (2018b) Protein arginine methyltransferase PRMT1 is essential for palatogenesis. J Dent Res 97:1510–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guccione E, Bassi C, Casadio F, Martinato F et al (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449:933

    Article  CAS  PubMed  Google Scholar 

  • Habashy HO, Rakha EA, Ellis IO et al (2013) The oestrogen receptor coactivator CARM1 has an oncogenic effect and is associated with poor prognosis in breast cancer. Breast Cancer Res Treat 140:307

    Article  CAS  PubMed  Google Scholar 

  • Hamey JJ, Separovich RJ, Wilkins MR (2018) MT-MAMS: protein methyltransferase motif analysis by mass spectrometry. J Proteome Res 17:3485–3491

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka Y, Tsusaka T, Shimizu N et al (2017) Histone H3 methylated at arginine 17 is essential for reprogramming the paternal genome in zygotes. Cell Rep 20:2756–2765

    Article  CAS  PubMed  Google Scholar 

  • Honda M, Nakashima K, Katada S (2017) PRMT1 regulates astrocytic differentiation of embryonic neural stem/precursor cells. J Neurochem 142(6):901–907. https://doi.org/10.1111/jnc.14123

    Article  CAS  PubMed  Google Scholar 

  • Hong H, Kao C, Jeng MH et al (2004) Aberrant expression of CARM1, a transcriptional coactivator of androgen receptor, in the development of prostate carcinoma and androgen-independent status. Cancer 101:83

    Article  CAS  PubMed  Google Scholar 

  • Huemer M, Simma B, Mayr D et al (2011) Low levels of asymmetric dimethylarginine in children with diabetes mellitus type I compared with healthy children. J Pediatr 158:602–606

    Article  CAS  PubMed  Google Scholar 

  • Hyllus D, Stein C, Schnabel K et al (2007) PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev 21:3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacques SL, Aquino KP, Gureasko J et al (2016) CARM1 preferentially methylates H3R17 over H3R26 through a random kinetic mechanism. Biochemistry 55:1635–1644

    Article  CAS  PubMed  Google Scholar 

  • Jeong HC, Park SJ, Choi JJ et al (2017) PRMT8 controls the pluripotency and mesodermal fate of human embryonic stem cells by enhancing the PI3K/AKT/SOX2 axis. Stem Cells 35:2037–2049

    Article  CAS  PubMed  Google Scholar 

  • Kang I, Okla M, Chung S (2014) Ellagic acid inhibits adipocyte differentiation through coactivator-associated arginine methyltransferase 1-mediated chromatin modification. J Nutr Biochem 25:946

    Article  CAS  PubMed  Google Scholar 

  • Kaniskan HÜ, Szewczyk MM, Yu Z et al (2015) A potent, selective and cell-active allosteric inhibitor of protein arginine methyltransferase 3 (PRMT3). Angew Chem Int Ed Engl 54:5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YR, Lee BK, Park RY et al (2010) Differential CARM1 expression in prostate and colorectal cancers. BMC Cancer 10:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kölbel K, Ihling C, Bellmann-Sickert K et al (2009) Type I arginine methyltransferases PRMT1 and PRMT-3 act distributively. J Biol Chem 284:8274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lakowski TM, Frankel A (2008) A kinetic study of human protein arginine N-methyltransferase 6 reveals a distributive mechanism. J Biol Chem 283:10015

    Article  CAS  PubMed  Google Scholar 

  • Lakowski TM, Frankel A (2009) Kinetic analysis of human protein arginine N-methyltransferase 2: formation of monomethyl- and asymmetric dimethyl-arginine residues on histone H4. Biochem J 421:253

    Article  CAS  PubMed  Google Scholar 

  • Lausen J (2013) Contributions of the histone arginine methyltransferase PRMT6 to the epigenetic function of RUNX1. Crit Rev Eukaryot Gene Expr 23:265

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Ianculescu I, Purcell D et al (2007) Surface-scanning mutational analysis of protein arginine methyltransferase 1: roles of specific amino acids in methyltransferase substrate specificity, oligomerization, and coactivator function. Mol Endocrinol 21:1381

    Article  CAS  PubMed  Google Scholar 

  • Lee YH, Ma H, Tan TZ et al (2012) Protein arginine methyltransferase 6 regulates embryonic stem cell identity. Stem Cells Dev 21:2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee WC, Lin WL, Matsui T et al (2015) Protein arginine methyltransferase 8: tetrameric structure and protein substrate specificity. Biochemistry 54:7514

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhu R, Wang W et al (2015) Arginine methyltransferase 1 in the nucleus accumbens regulates behavioral effects of cocaine. J Neurosci 35:12890

    Article  CAS  PubMed  Google Scholar 

  • Lim Y, Lee E, Lee J et al (2008) Down-regulation of asymmetric arginine methylation during replicative and H2O2-induced premature senescence in WI-38 human diploid fibroblasts. J Biochem 144:523

    Article  CAS  PubMed  Google Scholar 

  • Lim Y, Yu S, Yun JA et al (2017) The prognostic significance of protein arginine methyltransferase 6 expression in colon cancer. Oncotarget 9:9010–9020

    PubMed  PubMed Central  Google Scholar 

  • Lin YL, Tsai YJ, Liu YF et al (2013) The critical role of protein arginine methyltransferase prmt8 in zebrafish embryonic and neural development is non-redundant with its paralogue prmt1. PLoS One 8:e55221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Li F, Ma A et al (2013) Exploiting an allosteric binding site of PRMT3 yields potent and selective inhibitors. J Med Chem 56:2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lupien M, Eeckhoute J, Meyer CA et al (2009) Coactivator function defines the active estrogen receptor alpha cistrome. Mol Cell Biol 29:3413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder S, Liu Y, Ford OH et al (2006) Involvement of arginine methyltransferase CARM1 in androgen receptor function and prostate cancer cell viability. Prostate 66:1292

    Article  CAS  PubMed  Google Scholar 

  • Mallappa C, Hu YJ, Shamulailatpam P et al (2011) The expression of myogenic microRNAs indirectly requires protein arginine methyltransferase (Prmt5) but directly requires Prmt4. Nucleic Acids Res 39:1243

    Article  CAS  PubMed  Google Scholar 

  • Nakai K, Xia W, Liao HW et al (2018) The role of PRMT1 in EGFR methylation and signaling in MDA-MB-468 triple-negative breast cancer cells. Breast Cancer 25(1):74–80

    Article  PubMed  Google Scholar 

  • Nakayama K, Szewczyk MM, Dela Sena C et al (2018) TP-064, a potent and selective small molecule inhibitor of PRMT4 for multiple myeloma. Oncotarget 9:18480–18493

    PubMed  PubMed Central  Google Scholar 

  • Neault M, Mallette FA, Vogel G et al (2012) Ablation of PRMT6 reveals a role as a negative transcriptional regulator of the p53 tumor suppressor. Nucleic Acids Res 40:9513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien KB, Alberich-Jordà M, Yadav N et al (2010) CARM1 is required for proper control of proliferation and differentiation of pulmonary epithelial cells. Development 137:2147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osada S, Suzuki S, Yoshimi C et al (2013) Elevated expression of coactivator-associated arginine methyltransferase 1 is associated with early hepatocarcinogenesis. Oncol Rep 30:1669

    Article  CAS  PubMed  Google Scholar 

  • Ou CY, LaBonte MJ, Manegold PC et al (2011) A coactivator role of CARM1 in the dysregulation of β-catenin activity in colorectal cancer cell growth and gene expression. Mol Cancer Res 9:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang L, Tian H, Chang N et al (2013) Loss of CARM1 is linked to reduced HuR function in replicative senescence. BMC Mol Biol 14:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phalke S, Mzoughi S, Bezzi M et al (2012) p53-Independent regulation of p21Waf1/Cip1 expression and senescence by PRMT6. Nucleic Acids Res 40:9534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu JW, Kim SK, Son MY et al (2017) Novel prognostic marker PRMT1 regulates cell growth via downregulation of CDKN1A in HCC. Oncotarget 8:115444–115455

    PubMed  PubMed Central  Google Scholar 

  • Schurter BT, Koh SS, Chen D et al (2001) Methylation of histone H3 by coactivator-associated arginine methyltransferase 1. Biochemistry 40:5747

    Article  CAS  PubMed  Google Scholar 

  • Selvi BR, Batta K, Kishore AH et al (2010) Identification of a novel inhibitor of coactivator-associated arginine methyltransferase 1 (CARM1)-mediated methylation of histone H3 arg-17. J Biol Chem 285:7143–7152

    Article  CAS  PubMed  Google Scholar 

  • Selvi BR, Swaminathan A, Maheshwari U, Nagabhushana A, Mishra RK, Kundu TK, Bronner M (2015) CARM1 regulates astroglial lineage through transcriptional regulation of Nanog and posttranscriptional regulation by miR92a. Mol Biol Cell 26(2):316–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen NY, Ng SY, Toepp SL et al (2018) Protein arginine methyltransferase expression and activity during myogenesis. Biosci Rep 38. pii: BSR20171533

    Google Scholar 

  • Siarheyeva A, Senisterra G, Allali-Hassani A et al (2012) An allosteric inhibitor of protein arginine methyltransferase 3. Structure 20:1425

    Article  CAS  PubMed  Google Scholar 

  • Stallcup MR, Chen D, Koh SS et al (2000) Co-operation between protein-acetylating and protein-methylating co-activators in transcriptional activation. Biochem Soc Trans 28:415

    Article  CAS  PubMed  Google Scholar 

  • Stein C, Riedl S, Rüthnick D et al (2012) The arginine methyltransferase PRMT6 regulates cell proliferation and senescence through transcriptional repression of tumor suppressor genes. Nucleic Acids Res 40:9522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Zhu G, Ding X et al (2014) Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1. Genes Dev 28:622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Chung HH, Woo AR et al (2014) Protein arginine methyltransferase 6 enhances ligand-dependent and -independent activity of estrogen receptor α via distinct mechanisms. Biochim Biophys Acta 1843:2067

    Article  CAS  PubMed  Google Scholar 

  • Swiercz R, Cheng D, Kim D et al (2007) Ribosomal protein rpS2 is hypomethylated in PRMT3-deficient mice. J Biol Chem 282:16917

    Article  CAS  PubMed  Google Scholar 

  • Teyssier C, Chen D, Stallcup MR (2002) Requirement for multiple domains of the protein arginine methyltransferase CARM1 in its transcriptional coactivator function. J Biol Chem 277:46066

    Article  CAS  PubMed  Google Scholar 

  • Toma-Fukai S, Kim JD, Park KE (2016) Novel helical assembly in arginine methyltransferase 8. J Mol Biol 428:1197–1208

    Article  CAS  PubMed  Google Scholar 

  • Troffer-Charlier N, Cura V, Hassenboehler P et al (2007) Functional insights from structures of coactivator-associated arginine methyltransferase 1 domains. EMBO J 26:4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai YJ, Pan H, Hung CM et al (2011) The predominant protein arginine methyltransferase PRMT1 is critical for zebrafish convergence and extension during gastrulation. FEBS J 278:905

    Article  CAS  PubMed  Google Scholar 

  • Waldmann T, Izzo A, Kamieniarz K et al (2011) Methylation of H2AR29 is a novel repressive PRMT6 target. Epigenetics Chromatin 4:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Huang ZQ, Xia L et al (2001) Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293:853

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Charoensuksai P, Watson NJ et al (2013) CARM1 automethylation is controlled at the level of alternative splicing. Nucleic Acids Res 41:6870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhao Z, Meyer MB, Saha S, Menggang Y, Guo A, Wisinski KB, Huang W, Cai W, Wesley Pike J, Yuan M, Ahlquist P, Wei X (2014) CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 25(1):21–36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wolf SS (2009) The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 66:2109–2121

    Article  CAS  PubMed  Google Scholar 

  • Wooderchak WL, Zang T, Zhou ZS et al (2008) Substrate profiling of PRMT1 reveals amino acid sequences that extend beyond the “RGG” paradigm. Biochemistry 47:9456

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Xu W (2012) Histone H3R17me2a mark recruits human RNA polymerase-associated factor 1 complex to activate transcription. Proc Natl Acad Sci USA 109:5675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Q, Bruce AW, Jedrusik A et al (2009) CARM1 is required in embryonic stem cells to maintain pluripotency and resist differentiation. Stem Cells 27:2637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Cho H, Evans RM (2003) Acetylation and methylation in nuclear receptor gene activation. Methods Enzymol 364:205

    CAS  PubMed  Google Scholar 

  • Yadav N, Cheng D, Richard S et al (2008) CARM1 promotes adipocyte differentiation by coactivating PPARgamma. EMBO Rep 9:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Lu Y, Espejo A et al (2010) TDRD3 is an effector molecule for arginine-methylated histone marks. Mol Cell 40:1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakrzewicz D, Eickelberg O (2009) From arginine methylation to ADMA: a novel mechanism with therapeutic potential in chronic lung diseases. BMC Pulm Med 9:5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang X, Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11:509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Qian K, Yan C et al (2017a) Discovery of decamidine as a new and potent PRMT1 inhibitor. Med Chem Commun 8:440–444

    Article  CAS  Google Scholar 

  • Zhang WY, Lu WC, Jiang H et al (2017b) Discovery of alkyl bis(oxy)dibenzimidamide derivatives as novel protein arginine methyltransferase 1 (PRMT1) inhibitors. Chem Biol Drug Des 90:1260–1270

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhu G, Su X et al (2018a) Nucleolar localization signal and histone methylation reader function is required for SPIN1 to promote rRNA gene expression. Biochem Biophys Res Commun 505:325–332

    Article  CAS  PubMed  Google Scholar 

  • Zhang XP, Jiang YB, Zhong CQ et al (2018b) PRMT1 promoted HCC growth and metastasis in vitro and in vivo via activating the STAT3 signalling pathway. Cell Physiol Biochem 47:1643–1654

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Adams A, Roberts B et al (2018) Protein arginine methyl transferase 1- and Jumonji C domain-containing protein 6-dependent arginine methylation regulate hepatocyte nuclear factor 4 alpha expression and hepatocyte proliferation in mice. Hepatology 67:1109–1126

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

TKK is recipient of JC Bose fellowship from Dept. of Science and technology, Govt. of India (SR/S2/JCB-28/2010). This work was supported by funding from Dept. of Biotechnology, Govt. of India (BT/01/CEIB/10/III/01) and JNCASR, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas K. Kundu .

Editor information

Editors and Affiliations

Ethics declarations

Authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Behera, A.K., Kundu, T.K. (2019). Asymmetric Dimethylation on Arginine (ADMA) of Histones in Development, Differentiation and Disease. In: Jurga, S., Barciszewski, J. (eds) The DNA, RNA, and Histone Methylomes. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-14792-1_20

Download citation

Publish with us

Policies and ethics