Skip to main content

Genome Sequence of Bitter Gourd and Its Comparative Study with Other Cucurbitaceae Genomes

  • Chapter
  • First Online:
The Bitter Gourd Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Bitter gourd (Momordica charantia) is a diploid Cucurbitaceae species. It is grown in Asia, Africa and the Caribbean. Its genome information is expected to be quite important in elucidating its uniqueness and usefulness as a vegetable and medicinal plant. The first draft genome sequence of bitter gourd was determined as the reference genome and an improved version of its annotation is publicly available. Since it was presumed that divergence in bitter gourd varieties was relatively low, it might not be easy to identify molecular makers closely linked to a trait. By comparing genome and its annotation with those in other Cucurbitaceae species, bitter gourd was found to be phylogenetically distant from other known cucurbit crops and there are unique properties in encoding genes. Particularly, ribosome-inactivating protein (RIP) in bitter gourd was found to have antitumor or antiviral activities. Twice the number of RIP encoding genes was present in bitter gourd genome by comparing to other Cucurbitaceae genomes. These multiplicated and diverged RIP genes might characterize bitter gourd as the medicinal plant, while their biological functions were unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbieri L, Polito L, Bolognesi A, Ciani M, Pelosi E, Farini V, Jha AK, Sharma N, Vivanco JM, Chambery A, Parente A, Stirpe F (2006) Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata. Biochem Biophys Acta 1760(5):783–792

    Article  CAS  Google Scholar 

  • Bharathi LK, Munshi AD, Behera TK, Vinod, Joseph John K, Das AB, Bhat KV, Sidhu AS (2012) Production and preliminary characterization of inter-specific hybrids derived from Momordica species. Curr Sci 103(2):178–186

    Google Scholar 

  • Boualem A, Troadec C, Camps C, Lemhemdi A, Morin H, Sari MA, Fraenkel-Zagouri R, Kovalski I, Dogimont C, Perl-Treves R, Bendahmane A (2015) A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350(6261):688–691

    Article  CAS  Google Scholar 

  • Boualem A, Troadec C, Kovalski I, Sari MA, Perl-Treves R, Bendahmane A (2009) A conserved ethylene biosynthesis enzyme leads to andromonoecy in two Cucumis species. PLoS ONE 4(7):e6144

    Article  Google Scholar 

  • Cui J, Luo S, Niu Y, Huang R, Wen Q, Su J, Miao N, He W, Dong Z, Cheng J, Hu K (2018) A RAD-based genetic map for anchoring scaffold sequences and identifying QTLs in bitter gourd (Momordica charantia). Front Plant Sci 9:477

    Article  Google Scholar 

  • Fan X, He L, Meng Y, Li G, Li L, Meng Y (2015) Alpha-MMC and MAP30, two ribosome-inactivating proteins extracted from Momordica charantia, induce cell cycle arrest and apoptosis in A549 human lung carcinoma cells. Mol Med Rep 11(5):3553–3558

    Article  CAS  Google Scholar 

  • Gangadhara Rao P, Behera TK, Gaikwad AB, Munshi AD, Jat GS, Boopalakrishnan G (2018) Mapping and QTL analysis of gynoecy and earliness in bitter gourd (Momordica charantia L.) using Genotyping-by-Sequencing (GBS) technology. Front Plant Sci 9:1555

    Google Scholar 

  • Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Hénaff E, Câmara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutiérrez S, Blanca J, Cañizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodríguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Melé M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Picó B, Gabaldón T, Roma G, Guigó R, Casacuberta JM, Arús P, Puigdomènech P (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109(29):11872–11877

    Article  CAS  Google Scholar 

  • Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB (2011) High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci USA 108(4):1513–1518

    Article  CAS  Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham BK, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, Kuang H, Ni P, Wang B, Liu J, Kou Q, Hou W, Zou X, Jiang J, Gong G, Klee K, Schoof H, Huang Y, Hu X, Dong S, Liang D, Wang J, Wu K, Xia Y, Zhao X, Zheng Z, Xing M, Liang X, Huang B, Lv T, Wang J, Yin Y, Yi H, Li R, Wu M, Levi A, Zhang X, Giovannoni JJ, Wang J, Li Y, Fei Z, Xu Y (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58

    Article  CAS  Google Scholar 

  • Huang S, Li R, Zhang Z, Li L, Gu X, Fan W, Lucas WJ, Wang X, Xie B, Ni P, Ren Y, Zhu H, Li J, Lin K, Jin W, Fei Z, Li G, Staub J, Kilian A, van der Vossen EA, Wu Y, Guo J, He J, Jia Z, Ren Y, Tian G, Lu Y, Ruan J, Qian W, Wang M, Huang Q, Li B, Xuan Z, Cao J, Asan, Wu Z, Zhang J, Cai Q, Bai Y, Zhao B, Han Y, Li Y, Li X, Wang S, Shi Q, Liu S, Cho WK, Kim JY, Xu Y, Heller-Uszynska K, Miao H, Cheng Z, Zhang S, Wu J, Yang Y, Kang H, Li M, Liang H, Ren X, Shi Z, Wen M, Jian M, Yang H, Zhang G, Yang Z, Chen R, Liu S, Li J, Ma L, Liu H, Zhou Y, Zhao J, Fang X, Li G, Fang L, Li Y, Liu D, Zheng H, Zhang Y, Qin N, Li Z, Yang G, Yang S, Bolund L, Kristiansen K, Zheng H, Li S, Zhang X, Yang H, Wang J, Sun R, Zhang B, Jiang S, Wang J, Du Y, Li S (2009) The genome of the cucumber, Cucumis sativus L. Nat Genet 41(12):1275–1281

    Article  CAS  Google Scholar 

  • Lee-Huang S, Huang PL, Chen HC, Huang PL, Bourinbaiar A, Huang HI, Kung HF (1995) Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene 161(2):151–156

    Article  CAS  Google Scholar 

  • Lo HY, Ho TY, Li CC, Chen JC, Liu JJ, Hsiang CY (2014) A novel insulin receptor-binding protein from Momordica charantia enhances glucose uptake and glucose clearance in vitro and in vivo through triggering insulin receptor signaling pathway. J Agri Food Chem 62(36):8952–8961

    Article  CAS  Google Scholar 

  • Martin A, Troadec C, Boualem A, Rajab M, Fernandez R, Morin H, Pitrat M, Dogimont C, Bendahmane A (2009) A transposon-induced epigenetic change leads to sex determination in melon. Nature 461(7267):1135–1138

    Article  CAS  Google Scholar 

  • Matsumura H, Miyagi N, Taniai N, Fukushima M, Tarora K, Shudo A, Urasaki N (2014) Mapping of the gynoecy in bitter gourd (Momordica charantia) using RAD-seq analysis. PLoS ONE 9(1):e87138

    Article  Google Scholar 

  • Montero-Pau J, Blanca J, Esteras C, Martínez-Pérez EM, Gómez P, Monforte AJ, Cañizares J, Picó B (2017) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in zucchini using genotyping-by-sequencing. BMC Genom 18(1):94

    Article  Google Scholar 

  • Puri M, Kaur I, Perugini MA, Gupta RC (2012) Ribosome-inactivating proteins: current status and biomedical applications. Drug Discov Today 17(13–14):774–783

    Article  CAS  Google Scholar 

  • Puri M, Kaur I, Kanwar RK, Gupta RC, Chauhan A, Kanwar JR (2009) Ribosome inactivating proteins (RIPs) from Momordica charantia for antiviral therapy. Curr Mol Med 9(9):1080–1094

    Article  CAS  Google Scholar 

  • Schaefer H, Renner SS (2010) A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia. Mol Phylogenet Evol 54(2):553–560

    Article  CAS  Google Scholar 

  • Sun H, Wu S, Zhang G, Jiao C, Guo S, Ren Y, Zhang J, Zhang H, Gong G, Jia Z, Zhang F, Tian J, Lucas WJ, Doyle JJ, Li H, Fei Z, Xu Y (2017) Karyotype stability and unbiased fractionation in the paleo-allotetraploid cucurbita genomes. Mol Plant 10(10):1293–1306

    Article  CAS  Google Scholar 

  • Urasaki N, Takagi H, Natsume S, Uemura A, Taniai N, Miyagi N, Fukushima M, Suzuki S, Tarora K, Tamaki M, Sakamoto M, Terauchi R, Matsumura H (2017) Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions. DNA Res 24(1):51–58

    CAS  Google Scholar 

  • Urasaki N, Tarora K, Teruya K (2015) Comparison of genome size among seven crops cultivated in Okinawa. Bull Okinawa Pref Agri Res Ctr 9:47–50

    Google Scholar 

  • Walsh MJ, Dodd JE, Hautbergue GM (2013) Ribosome-inactivating proteins. Virulence 4(8):774–784

    Article  Google Scholar 

  • Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV, Zdobnov EM (2018) BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol Biol Evol 35:543–548

    Article  CAS  Google Scholar 

  • Wu S, Shamimuzzaman M, Sun H, Salse J, Sui X, Wilder A, Wu Z, Levi A, Xu Y, Ling KS, Fei Z (2017) The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a papaya ring-spot virus resistance locus. Plant J 92(5):963–975

    Article  CAS  Google Scholar 

  • Xu Q, Shi Y, Yu T, Xu X, Yan Y, Qi X, Chen X (2016) Whole-genome resequencing of a cucumber chromosome segment substitution line and its recurrent parent to identify candidate genes governing powdery mildew resistance. PLoS ONE 11(10):e0164469

    Article  Google Scholar 

  • Yang P1, Li X, Shipp MJ, Shockey JM, Cahoon EB (2010) Mining the bitter melon (Momordica charantia L.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes. BMC Plant Biol 10:250

    Article  Google Scholar 

  • Yao X, Li J, Deng N, Wang S, Meng Y, Shen F (2011) Immunoaffinity purification of a-momorcharin from bitter melon seeds (Momordica charantia). J Sep Sci 34(21):3092–3098

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Matsumura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matsumura, H., Urasaki, N. (2020). Genome Sequence of Bitter Gourd and Its Comparative Study with Other Cucurbitaceae Genomes. In: Kole, C., Matsumura, H., Behera, T. (eds) The Bitter Gourd Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-15062-4_10

Download citation

Publish with us

Policies and ethics