Skip to main content

Introduction

  • Chapter
  • First Online:
Diffusion in Random Fields

Part of the book series: Geosystems Mathematics ((GSMA))

  • 549 Accesses

Abstract

Stochastic approaches for transport processes in heterogeneous media are motivated by the need to use stochastic parameterizations of the model equations. Essentially, this results in modeling diffusion processes in random fields. For instance, in stochastic subsurface hydrology, random hydraulic conductivity parameters generate random groundwater flow velocity fields and solute transport is modeled by diffusion equations with random drift coefficients. Technically, modeling approaches are based on equivalent Fokker–Planck and Itô representations of the diffusion in random fields, that is, through trajectories of molecules or computational particles and the corresponding continuous fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzraiee, A.H., Baú, D., Elhaddad, A.: Estimation of heterogeneous aquifer parameters using centralized and decentralized fusion of hydraulic tomography data from multiple pumping tests. Hydrol. Earth Syst. Sci. Discuss. 11(4), 4163–4208 (2014)

    Article  Google Scholar 

  2. Bayer-Raich, M., Jarsjö, J., Liedl, R., Ptak, T., Teutsch, G.: Average contaminant concentration and mass flow in aquifers from time-dependent pumping well data: analytical framework. Water Resour. Res. 40(8), W08303 (2004)

    Article  Google Scholar 

  3. Bogachev, L.V.: Random walks in random environments. In: Françoise, J.-P., Naber, G., Tsou, S.T. (eds.) Encyclopedia of Mathematical Physics, vol. 4, pp. 353–371. Elsevier, Oxford (2006)

    Chapter  Google Scholar 

  4. Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  5. Brunner, F., Radu, F.A., Bause, M., Knabner, P.: Optimal order convergence of a modified BDM1 mixed finite element scheme for reactive transport in porous media. Adv. Water Resour. 35, 163–171 (2012)

    Article  Google Scholar 

  6. Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57(4), 785–796 (1973)

    Article  MathSciNet  Google Scholar 

  7. Chorin, A.J.: Vortex sheet approximation of boundary layers. J. Comput. Phys. 27(3), 428–442 (1978)

    Article  Google Scholar 

  8. Craciun, M., Vamos, C., Suciu, N.: Analysis and generation of groundwater concentration time series. Adv. Water Resour. 111, 20–30 (2018)

    Article  Google Scholar 

  9. de Barros, F.P.J., Fiori, A.: First-order based cumulative distribution function for solute concentration in heterogeneous aquifers: theoretical analysis and implications for human health risk assessment. Water Resour. Res. 50(5), 4018–4037 (2014)

    Article  Google Scholar 

  10. Destouni, G., Graham, W.: The influence of observation method on local concentration statistics in the subsurface. Water Resour. Res. 33(4), 663–676 (1997)

    Article  Google Scholar 

  11. Einstein, A.: On the movement of small particles suspended in stationary liquids required by the molecular kinetic theory of heat. Ann. Phys. 17, 549–560 (1905)

    Article  Google Scholar 

  12. Fiori, A.: On the influence of local dispersion in solute transport through formations with evolving scales of heterogeneity. Water Resour. Res. 37(2), 235–242 (2001)

    Article  Google Scholar 

  13. Gardiner, C.: Stochastic Methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  14. Herz, M.: Mathematical modeling and analysis of electrolyte solutions. Ph.D. thesis, Erlangen-Nuremberg University (2014). http://www.mso.math.fau.de/fileadmin/am1/projects/PhD_Herz.pdf

  15. Karapiperis, T., Blankleider, B.: Cellular automaton model of reaction-transport processes. Physica D 78, 30–64 (1994)

    Article  Google Scholar 

  16. Kloeden, P.E., Platen, E.: Numerical Solutions of Stochastic Differential Equations. Springer, Berlin (1999)

    MATH  Google Scholar 

  17. Knabner, P., Angermann, L.: Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Springer, New York (2003)

    MATH  Google Scholar 

  18. Kräutle, S., Knabner, P.: A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media. Water Resour. Res. 41(9), W09414 (2005)

    Article  Google Scholar 

  19. Li, J., Xiu, D.: A generalized polynomial chaos based ensemble Kalman filter with high accuracy. J. Comput. Phys. 228, 5454–5469 (2009)

    Article  MathSciNet  Google Scholar 

  20. List, F., Radu, F.A.: A study on iterative methods for solving Richards’ equation. Comput. Geosci. 20(2), 341–353 (2016)

    Article  MathSciNet  Google Scholar 

  21. Liu, Y., Kitanidis, P.K.: A mathematical and computational study of the dispersivity tensor in anisotropic porous media. Adv. Water Resour. 62, 303–316 (2013)

    Article  Google Scholar 

  22. Meyer, D.W., Jenny, P., Tchelepi, H.A.: A joint velocity-concentration PDF method for tracer flow in heterogeneous porous media. Water Resour. Res. 46, W12522 (2010)

    Google Scholar 

  23. Müller, I.: Thermodynamics. Pitman, Boston (1985)

    MATH  Google Scholar 

  24. Naff, R.L., Haley, D.F., Sudicky, E.A.: High-resolution Monte Carlo simulation of flow and conservative transport in heterogeneous porous media 1. Methodology and flow results. Water Resour. Res. 34(4), 663–677 (1998)

    Article  Google Scholar 

  25. Pasetto, D., Guadagnini, A., Putti, M.: POD-based Monte Carlo approach for the solution of regional scale groundwater flow driven by randomly distributed recharge. Adv. Water Resour. 34(11), 1450–1463 (2011)

    Article  Google Scholar 

  26. Radu, F.A., Suciu, N., Hoffmann, J., Vogel, A., Kolditz, O., Park, C.-H., Attinger, S.: Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study. Adv. Water Resour. 34, 47–61 (2011)

    Article  Google Scholar 

  27. Radu, F.A., Nordbotten, J.M., Pop, I.S., Kumar, K.: A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math. 289, 134–141 (2015)

    Article  MathSciNet  Google Scholar 

  28. Scheidegger, A.E.: General theory of dispersion in porous media. J. Geophys. Res. 66(10), 3273–3278 (1961)

    Article  Google Scholar 

  29. Srzic, V., Cvetkovic, V., Andricevic, R., Gotovac, H.: Impact of aquifer heterogeneity structure and local-scale dispersion on solute concentration uncertainty. Water Resour. Res. 49(6), 3712–3728 (2013)

    Article  Google Scholar 

  30. Suciu, N.: Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields. Phys. Rev. E 81, 056301 (2010)

    Article  Google Scholar 

  31. Suciu, N.: Diffusion in random velocity fields with applications to contaminant transport in groundwater. Adv. Water Resour. 69, 114–133 (2014)

    Article  Google Scholar 

  32. Suciu, N., Radu, F.A., Prechtel, A., Brunner, F., Knabner, P.: A coupled finite element–global random walk approach to advection-dominated transport in porous media with random hydraulic conductivity. J. Comput. Appl. Math. 246, 27–37 (2013)

    Article  MathSciNet  Google Scholar 

  33. Suciu, N., Schüler, L., Attinger, S., Knabner, P.: Towards a filtered density function approach for reactive transport in groundwater. Adv. Water Resour. 90, 83–98 (2016)

    Article  Google Scholar 

  34. Vamoş, C., Suciu, N., Vereecken, H.: Generalized random walk algorithm for the numerical modeling of complex diffusion processes. J. Comput. Phys. 186(2), 527–244 (2003)

    Article  MathSciNet  Google Scholar 

  35. Vamoş, C., Crăciun, M., Suciu, N.: Automatic algorithm to decompose discrete paths of fractional Brownian motion into self-similar intrinsic components. Eur. Phys. J. B 88, 250 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suciu, N. (2019). Introduction. In: Diffusion in Random Fields . Geosystems Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-15081-5_1

Download citation

Publish with us

Policies and ethics