Skip to main content

Adaptive Importance Sampling with Forward-Backward Stochastic Differential Equations

  • Conference paper
  • First Online:
Stochastic Dynamics Out of Equilibrium (IHPStochDyn 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 282))

Included in the following conference series:

Abstract

We describe an adaptive importance sampling algorithm for rare events that is based on a dual stochastic control formulation of a path sampling problem. Specifically, we focus on path functionals that have the form of cumulate generating functions, which appear relevant in the context of, e.g. molecular dynamics, and we discuss the construction of an optimal (i.e. minimum variance) change of measure by solving a stochastic control problem. We show that the associated semi-linear dynamic programming equations admit an equivalent formulation as a system of uncoupled forward-backward stochastic differential equations that can be solved efficiently by a least squares Monte Carlo algorithm. We illustrate the approach with a suitable numerical example and discuss the extension of the algorithm to high-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More precisely, \(\varphi |_{\mathcal {F}_{\tau }}\) is understood as the restriction of the measure \(Q^*\) defined by \(dQ^*=\varphi dP\) to the \(\sigma \)-algebra \({\mathcal {F}_{\tau }}\) that contains all measurable sets \(E\in {\mathcal E}\), with the property that for every \(t\geqslant 0\) the set \(E\cap \{\tau \leqslant t\}\) is an element of the \(\sigma \)-algebra \(\mathcal {F}_{t}=\sigma (X_s:0\leqslant s\leqslant t)\) that is generated by all trajectories \((X_s)_{0\leqslant s\leqslant t}\) of length t.

  2. 2.

    For the numerical computation, we add reflecting boundary conditions at \(x=-L\) for some \(L>0\), the precise value of which does not affect the results (assuming that it is sufficiently large, say, \(L>3\)) since the potential has a 4-th order growth.

References

  1. Asmussen, A., Glynn, P.: Stochastic Simulation: Algorithms and Analysis. Springer, New York (2007)

    Google Scholar 

  2. Bahlali, K., Gherbal, B., Mezerdi, B.: Existence of optimal controls for systems driven by FBSDEs. Syst. Control Lett. 60, 344–349 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bahlali, K., Kebiri, O., Mtiraoui, A.: Existence of an optimal control for a system driven by a degenerate coupled forward-backward stochastic differential equations. C. R. Acad. Sci. Paris, Ser. I 355(1), 84–89 (2016)

    Article  MathSciNet  Google Scholar 

  4. Bender, C., Steiner, J.: Least-squares Monte Carlo for BSDEs. In: Carmona et al. (Eds.) Numerical Methods in Finance, pp. 257–289. Springer (2012)

    Google Scholar 

  5. Bensoussan, A., Boccardo, L., Murat, F.: Homogenization of elliptic equations with principal part not in divergence form and Hamiltonian with quadratic growth. Commun. Pure Appl. Math. 39, 769–805 (1986)

    Article  MathSciNet  Google Scholar 

  6. Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann. Probab. 26(4), 1641–1659 (1998)

    Article  MathSciNet  Google Scholar 

  7. Dai Pra, P., Meneghini, L., Runggaldier, W.J.: Connections between stochastic control and dynamic games. Math. Control Signals Systems 9, 303–326 (1996)

    Article  MathSciNet  Google Scholar 

  8. Dupuis, P., Wang, H.: Importance sampling, large deviations, and differential games. Stoch. Int. J. Probab. Stoch. Proc. 76, 481–508 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Dupuis, P., Wang, H.: Subsolutions of an Isaacs equation and efficient schemes for importance sampling. Math. Oper. Res. 32, 723–757 (2007)

    Article  MathSciNet  Google Scholar 

  10. Ellis, R.S.: Entropy, Large Deviations and Statistical Mechanics. Grundlehren der mathematischen Wissenschaften, vol. 271. Springer, New York (1985)

    Google Scholar 

  11. Engelund, S., Rackwitz, R.: A benchmark study on importance sampling techniques in structural reliability. Struct. Saf. 12, 255–276 (1993)

    Article  Google Scholar 

  12. Fleming, W.H., Mete Soner, H.: Controlled Markov Processes and Viscosity Solutions. Applications of mathematics, 2nd edn. Springer, New York (2006)

    Google Scholar 

  13. Gobet, E., Lemor, J.-P., Warin, X.: A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15, 2172–2202 (2005)

    Article  MathSciNet  Google Scholar 

  14. Hartmann, C., Banisch, R., Sarich, M., Badowski, Th., Schütte, Ch.: Characterization of rare events in molecular dynamics. Entropy 16, 350–376 (2014)

    Article  MathSciNet  Google Scholar 

  15. Hartmann, C., Richter, L., Schütte, Ch., Zhang, W.: Variational characterization of free energy: theory and algorithms. Entropy 19, 626–653 (2017)

    Article  Google Scholar 

  16. Hartmann, C., Schütte, Ch.: Efficient rare event simulation by optimal nonequilibrium forcing. J. Stat. Mech. Theor. Exp. 2012, 11004 (2012)

    Google Scholar 

  17. Haugh, M.B., Kogan, L.: Pricing American options: a duality approach. Oper. Res. 52, 258–270 (2004)

    Article  MathSciNet  Google Scholar 

  18. Kobylanski, M.: Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28(2), 558–602 (2000)

    Article  MathSciNet  Google Scholar 

  19. Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer (2010)

    Google Scholar 

  20. Pardoux, E., Peng, S.: Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Rozovskii, B.L., Sowers, R.B. (eds.) Stochastic Partial Differential Equations and their Applications. Lecture Notes in Control and Information Sciences, vol. 176, pp. 200–217. Springer, Berlin (1992)

    Google Scholar 

  21. Peng, S.: Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim. 27, 125–144 (1993)

    Article  MathSciNet  Google Scholar 

  22. Pham, H.: Continuous-time stochastic control and optimization with financial applications. Stochastic modelling and applied probability. Springer, Heidelberg (2009)

    Book  Google Scholar 

  23. Rogers, L.C.G.: Monte Carlo valuation of American options. Math. Finance 12, 271–286 (2002)

    Article  MathSciNet  Google Scholar 

  24. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method. Wiley, Hoboken (2008)

    Google Scholar 

  25. Touzi, N.: Optimal stochastic control, stochastic target problem, and backward differential equation. Lecture Notes of a course at the Fields Institute (2010). www.cmap.polytechnique.fr/~touzi/Fields-LN.pdf

  26. Turkedjiev, P.: Numerical methods for backward stochastic differential equations of quadratic and locally Lipschitz type, Dissertation, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II (2013)

    Google Scholar 

  27. Vanden-Eijnden, E., Weare, J.: Rare event simulation of small noise diffusions. Commun. Pure Appl. Math. 65, 1770–1803 (2012)

    Article  MathSciNet  Google Scholar 

  28. Wouters, J., Bouchet, F.: Rare event computation in deterministic chaotic systems using genealogical particle analysis. J. Phys. A 49, 374002 (2016)

    Article  MathSciNet  Google Scholar 

  29. Zhang, W., Wang, H., Hartmann, C., Weber, M., Schütte, Ch.: Applications of the cross-entropy method to importance sampling and optimal control of diffusions. SIAM J. Sci. Comput. 36, A2654–A2672 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This research has been partially funded by Deutsche Forschungsgemeinschaft (DFG) through the grant CRC 1114 “Scaling Cascades in Complex Systems”, Project A05 “Probing scales in equilibrated systems by optimal nonequilibrium forcing”. Omar Kebiri received funding from the EU-METALIC II Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kebiri, O., Neureither, L., Hartmann, C. (2019). Adaptive Importance Sampling with Forward-Backward Stochastic Differential Equations. In: Giacomin, G., Olla, S., Saada, E., Spohn, H., Stoltz, G. (eds) Stochastic Dynamics Out of Equilibrium. IHPStochDyn 2017. Springer Proceedings in Mathematics & Statistics, vol 282. Springer, Cham. https://doi.org/10.1007/978-3-030-15096-9_7

Download citation

Publish with us

Policies and ethics