Skip to main content

Voronoi Polygonal Hybrid Finite Elements and Their Applications

  • Chapter
  • First Online:
Current Trends in Mathematical Analysis and Its Interdisciplinary Applications

Abstract

This chapter describes the polygonal hybrid finite element formulation with fundamental solution kernels for two-dimensional elasticity in isotropic and homogeneous solids. The n-sided polygonal discretization is implemented by the Voronoi diagram in a given domain. Then the element formulation is established by introducing two independent displacements, respectively, defined within the element domain and over the element boundary. The element interior fields approximated by the fundamental solutions of problem can naturally satisfy the governing equations and the element frame fields approximated by one-dimensional shape functions are used to guarantee the conformity of elements. As a result, only element boundary integrals caused in the modified hybrid functional are needed for practical computation. Finally, the present method is verified by three examples involving the usage of general and special n-sided polygonal hybrid finite elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.R. Chandrupatla, A.D. Belegundu, Introduction to Finite Elements in Engineering (Pearson, London, 2012)

    MATH  Google Scholar 

  2. Q.H. Qin, Trefftz finite element method and its applications. Appl. Mech. Rev. 58, 316–337 (2005)

    Google Scholar 

  3. N. Sukumar, E.A. Malsch, Recent advances in the construction of polygonal finite element interpolants. Arch. Comput. Method Eng. 13, 129–163 (2006)

    MathSciNet  MATH  Google Scholar 

  4. G. Manzini, A. Russo, N. Sukumar, New perspectives on polygonal and polyhedral finite element methods. Math. Models Methods Appl. Sci. 24, 1665–1699 (2014)

    MathSciNet  MATH  Google Scholar 

  5. A. Francis, A. Ortiz-Bernardin, S. Bordas, S. Natarajan, Linear smoothed polygonal and polyhedral finite elements. Int. J. Numer. Method Eng. 109, 1263–1288 (2016)

    MathSciNet  Google Scholar 

  6. K. Hormann, N. Sukumar, Generalized Barycentric Coordinates in Computer Graphics and Computational Mechanics (CRC Press, Boca Raton, 2017)

    MATH  Google Scholar 

  7. S. Natarajan, S.P. Bordas, E.T. Ooi, Virtual and smoothed finite elements: a connection and its application to polygonal/polyhedral finite element methods. Int. J. Numer. Methods Eng. 104, 1173–1199 (2015)

    MathSciNet  MATH  Google Scholar 

  8. S. Natarajan, E.T. Ooi, I. Chiong, C. Song, Convergence and accuracy of displacement based finite element formulations over arbitrary polygons: Laplace interpolants, strain smoothing and scaled boundary polygon formulation. Finite Elem. Anal. Des. 85, 101–122 (2014)

    MathSciNet  Google Scholar 

  9. L.B.D. Veiga, F. Brezzi, A. Cangiani, G. Manzini, L.D. Marini, A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    MathSciNet  MATH  Google Scholar 

  10. E.L. Wachspress, A Rational Finite Element Basis (Academic Press, New York, 1975)

    MATH  Google Scholar 

  11. M.S. Floater, K. Hormann, G. Kós, A general construction of barycentric coordinates over convex polygons. Adv. Comput. Math. 24, 311–331 (2006)

    MATH  Google Scholar 

  12. E.B. Chin, J.B. Lasserre, N. Sukumar, Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra. Comput. Mech. 56, 967–981 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Q.H. Qin, The Trefftz Finite and Boundary Element Method (WIT Press, Boston, 2000)

    MATH  Google Scholar 

  14. J. Jirousek, A. Zieliński, Survey of Trefftz-type element formulations. Comput. Struct. 63, 225–242 (1997)

    MATH  Google Scholar 

  15. J.A.T. de Freitas, Formulation of elastostatic hybrid-Trefftz stress elements. Comput. Methods Appl. Mech. Eng. 153, 127–151 (1998)

    MathSciNet  MATH  Google Scholar 

  16. Q.H. Qin, H. Wang, Matlab and C Programming for Trefftz Finite Element Methods (CRC Press, Boca Raton, 2009)

    MATH  Google Scholar 

  17. Q.H. Qin, Hybrid-Trefftz finite element method for Reissner plates on an elastic foundation. Comput Methods Appl. Mech. Eng. 122, 379–392 (1995)

    MathSciNet  MATH  Google Scholar 

  18. H. Wang, Q.H. Qin, D. Arounsavat, Application of hybrid Trefftz finite element method to non-linear problems of minimal surface. Int. J. Numer. Methods Eng. 69, 1262–1277 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Q.H. Qin, Fundamental solution based finite element method. J. Appl. Mech. Eng. 2, e118 (2013)

    Google Scholar 

  20. H. Wang, Q.H. Qin, Hybrid FEM with fundamental solutions as trial functions for heat conduction simulation. Acta Mech. Solida Sin. 22, 487–498 (2009)

    Google Scholar 

  21. H. Wang, L.L. Cao, Q.H. Qin, Hybrid graded element model for nonlinear functionally graded materials. Mech. Adv. Mater. Struct. 19, 590–602 (2012)

    Google Scholar 

  22. H. Wang, Q.H. Qin, Fundamental-solution-based finite element model for plane orthotropic elastic bodies. Eur. J. Mech. Solid 29, 801–809 (2010)

    Google Scholar 

  23. H. Wang, Q.H. Qin, Fundamental-solution-based hybrid FEM for plane elasticity with special elements. Comput. Mech. 48, 515–528 (2011)

    MathSciNet  MATH  Google Scholar 

  24. H. Wang, Q.H. Qin, Special fiber elements for thermal analysis of fiber-reinforced composites. Eng. Comput. 28, 1079–1097 (2011)

    Google Scholar 

  25. H. Wang, Q.H. Qin, A new special element for stress concentration analysis of a plate with elliptical holes. Acta Mech. 223, 1323–1340 (2012)

    MathSciNet  MATH  Google Scholar 

  26. H. Wang, Q.H. Qin, Numerical implementation of local effects due to two-dimensional discontinuous loads using special elements based on boundary integrals. Eng. Anal. Bound. Elem. 36, 1733–1745 (2012)

    MathSciNet  MATH  Google Scholar 

  27. H. Wang, Q.H. Qin, Boundary integral based graded element for elastic analysis of 2D functionally graded plates. Eur. J. Mech. Solid 33, 12–23 (2012)

    MathSciNet  MATH  Google Scholar 

  28. H. Wang, Q.H. Qin, X.P. Liang, Solving the nonlinear Poisson-type problems with F-Trefftz hybrid finite element model. Eng. Anal. Bound. Elem. 36, 39–46 (2012)

    MathSciNet  MATH  Google Scholar 

  29. H. Wang, Q.H. Qin, FE approach with Green’s function as internal trial function for simulating bioheat transfer in the human eye. Arch. Mech. 62, 493–510 (2010)

    MathSciNet  MATH  Google Scholar 

  30. H. Wang, Q.H. Qin, A fundamental solution-based finite element model for analyzing multi-layer skin burn injury. J. Mech. Med. Biol. 12, 1250027 (2012)

    Google Scholar 

  31. Q.H. Qin, H. Wang, Special circular hole elements for thermal analysis in cellular solids with multiple circular holes. Int. J. Comput. Methods 10, 1350008 (2013)

    MathSciNet  MATH  Google Scholar 

  32. H. Wang, X.J. Zhao, J.S. Wang, Interaction analysis of multiple coated fibers in cement composites by special n-sided interphase/fiber elements. Compos. Sci. Technol. 118, 117–126 (2015)

    Google Scholar 

  33. H. Wang, Q.H. Qin, Y. Xiao, Special n-sided Voronoi fiber/matrix elements for clustering thermal effect in natural-hemp-fiber-filled cement composites. Int. J. Heat Mass Transf. 92, 228–235 (2016)

    Google Scholar 

  34. H. Wang, Q.H. Qin, A new special coating/fiber element for analyzing effect of interface on thermal conductivity of composites. Appl. Math. Comput. 268, 311–321 (2015)

    MathSciNet  MATH  Google Scholar 

  35. H. Wang, Y. Gao, Q.H. Qin, Green’s function based finite element formulations for isotropic seepage analysis with free surface. Latin Am. J. Solids Struct. 12, 1991–2005 (2015)

    Google Scholar 

  36. H. Wang, Q.H. Qin, Voronoi polygonal hybrid finite elements with boundary integrals for plane isotropic elastic problems. Int. J. Appl. Mech. 09, 1750031 (2017)

    Google Scholar 

  37. H. Wang, Q.H. Qin, Y.P. Lei, Green’s-function-based-finite element analysis of fully plane anisotropic elastic bodies. J. Mech. Sci. Technol. 31, 1305–1313 (2017)

    Google Scholar 

  38. O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method for Solid and Structural Mechanics (Butterworth-Heinemann, Oxford, 2005)

    MATH  Google Scholar 

  39. H. Wang, B. Liu, Y. Kang, Q.H. Qin, Analysing effective thermal conductivity of 2D closed-cell foam based on shrunk Voronoi tessellations. Arch. Mech. 69, 451–470 (2017)

    MATH  Google Scholar 

  40. C.A. Brebbia, J.C.F. Telles, L.C. Wrobel, Boundary Element Techniques: Theory and Applications in Engineering (Springer, Berlin, 1984)

    MATH  Google Scholar 

  41. Q.H. Qin, Green’s Function and Boundary Elements of Multifield Materials (Elsevier, Oxford, 2007)

    Google Scholar 

  42. C.Y. Lee, H. Wang, Q.H. Qin, Dual reciprocity boundary element method using compactly supported radial basis functions for 3D linear elasticity with body forces. Int. J. Mech. Mater. Des. 12, 463–476 (2016)

    Google Scholar 

  43. C.Y. Lee, H. Wang, Q.H. Qin, Efficient hypersingular line and surface integrals direct evaluation by complex variable differentiation method. Appl. Math. Comput. 316, 256–281 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41, 637–676 (1999)

    MathSciNet  MATH  Google Scholar 

  45. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1987)

    MATH  Google Scholar 

  46. C. Talischi, G.H. Paulino, A. Pereira, I.F. Menezes, PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45, 309–328 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Q.H. Qin, Y. Huang, BEM of postbuckling analysis of thin plates. Appl. Math. Model. 14, 544–548 (1990)

    MATH  Google Scholar 

  48. G. Fairweather, A. Karageorghis, The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9, 69–95 (1998)

    MathSciNet  MATH  Google Scholar 

  49. H. Wang, Q.H. Qin, Meshless approach for thermo-mechanical analysis of functionally graded materials. Eng. Anal. Bound. Elem. 32, 704–712 (2008)

    MATH  Google Scholar 

  50. H. Wang, Q.H. Qin, Y. Kang, A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media. Arch. Appl. Mech. 74, 563–579 (2005)

    MATH  Google Scholar 

  51. Z. Zhang, H. Wang, Q.H. Qin, Meshless method with operator splitting technique for transient nonlinear bioheat transfer in two-dimensional skin tissues. Int. J. Mol. Sci. 16, 2001–2019 (2015)

    Google Scholar 

  52. Z.W. Zhang, H. Wang, Q.H. Qin, Method of fundamental solutions for nonlinear skin bioheat model. J. Mech. Med. Biol. 14, 1450060 (2014)

    Google Scholar 

  53. H. Wang, Q.H. Qin, Some problems on the method of fundamental solution with radial basis functions. Acta. Mech. Solida Sin. 20, 21–29 (2007)

    Google Scholar 

  54. C.S. Chen, A. Karageorghis, Y.S. Smyrlis, The Method of Fundamental Solutions: A Meshless Method (Dynamic Publishers, Atlanta, 2008)

    Google Scholar 

  55. C.Y. Lee, H. Wang, Q.H. Qin, Method of fundamental solutions for 3D elasticity with body forces by coupling compactly supported radial basis functions. Eng. Anal. Bound. Elem. 60, 123–136 (2015)

    MathSciNet  MATH  Google Scholar 

  56. H. Wang, Q.H. Qin, A meshless method for generalized linear or nonlinear Poisson-type problems. Eng. Anal. Bound. Elem. 30, 515–521 (2006)

    MATH  Google Scholar 

  57. W.A. Yao, H. Wang, Virtual boundary element integral method for 2-D piezoelectric media. Finite Elem. Anal. Des. 41, 875–891 (2005)

    Google Scholar 

  58. T.H.H. Pian, C.C. Wu, Hybrid and Incompatible Finite Element Methods (CRC Press, Boca Raton, 2005)

    MATH  Google Scholar 

  59. J. Jirousek, Q.H. Qin, Application of hybrid-Trefftz element approach to transient heat conduction analysis. Comput. Struct. 58, 195–201 (1996)

    MATH  Google Scholar 

  60. Q.H. Qin, Hybrid Trefftz finite-element approach for plate bending on an elastic foundation. Appl. Math. Model. 18, 334–339 (1994)

    MathSciNet  MATH  Google Scholar 

  61. Q.H. Qin, Variational formulations for TFEM of piezoelectricity. Int. J. Solids Struct. 40, 6335–6346 (2003)

    MATH  Google Scholar 

  62. Q.H. Qin, Solving anti-plane problems of piezoelectric materials by the Trefftz finite element approach. Comput. Mech. 31, 461–468 (2003)

    MATH  Google Scholar 

  63. Q.H. Qin, Fracture Mechanics of Piezoelectric Materials (WIT Press, Southampton, 2001)

    Google Scholar 

  64. Q.H. Qin, S.W. Yu, An arbitrarily-oriented plane crack terminating at the interface between dissimilar piezoelectric materials. Int. J. Solids Struct. 34, 581–590 (1997)

    MATH  Google Scholar 

  65. Q.H. Qin, Y.W. Mai, A closed crack tip model for interface cracks in thermopiezoelectric materials. Int. J. Solids Struct. 36, 2463–2479 (1999)

    MATH  Google Scholar 

  66. S.W. Yu, Q.H. Qin, Damage analysis of thermopiezoelectric properties: part I–crack tip singularities. Theor. Appl. Fract. Mech. 25, 263–277 (1996)

    Google Scholar 

  67. Q.H. Qin, Y.W. Mai, Crack growth prediction of an inclined crack in a half-plane thermopiezoelectric solid. Theor. Appl. Fract. Mech. 26, 185–191 (1997)

    Google Scholar 

  68. Q.H. Qin, Y.W. Mai, S.W. Yu, Some problems in plane thermopiezoelectric materials with holes. Int. J. Solids Struct. 36, 427–439 (1999)

    MATH  Google Scholar 

  69. Q.H. Qin, Y.W. Mai, S.W. Yu, Effective moduli for thermopiezoelectric materials with microcracks. Int. J. Fract. 91, 359–371 (1998)

    Google Scholar 

  70. H.C. Simpson, S.J. Spector, On the positivity of the second variation in finite elasticity. Arch. Ration. Mech. Anal. 98, 1–30 (1987)

    MathSciNet  MATH  Google Scholar 

  71. Q.H. Qin, H. Wang, Special elements for composites containing hexagonal and circular fibers. Int. J. Comput. Methods 12, 1540012 (17 pages) (2015)

    Google Scholar 

  72. H. Wang, Q.H. Qin, C.Y. Lee, n-sided polygonal hybrid finite elements with unified fundamental solution kernels for topology optimization. Appl. Math. Model. 66, 97–117 (2019)

    Google Scholar 

  73. C. Talischi, G.H. Paulino, A. Pereira, I.F. Menezes, Polygonal finite elements for topology optimization: a unifying paradigm. Int. J. Numer. Methods Eng. 82, 671–698 (2010)

    MATH  Google Scholar 

  74. Y.Q. Long, Y. Xu, Generalized conforming triangular membrane element with vertex rigid rotational freedoms. Finite Elem. Anal. Des. 17, 259–271 (1994)

    MATH  Google Scholar 

  75. H.Y. Hu, J.S. Chen, W. Hu, Weighted radial basis collocation method for boundary value problems. Int. J. Numer. Methods Eng. 69, 2736–2757 (2007)

    MathSciNet  MATH  Google Scholar 

  76. L. Wang, Z. Zhong, Radial basis collocation method for nearly incompressible elasticity. J. Eng. Mech. 139, 439–451 (2013)

    Google Scholar 

  77. N.I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity (Noordhoff Ltd, Groningen, 1953)

    Google Scholar 

  78. R. Piltner, Some remarks on finite elements with an elliptic hole. Finite Elem. Anal. Des. 44, 767–772 (2008)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Hua Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, H., Qin, QH. (2019). Voronoi Polygonal Hybrid Finite Elements and Their Applications. In: Dutta, H., Kočinac, L.D.R., Srivastava, H.M. (eds) Current Trends in Mathematical Analysis and Its Interdisciplinary Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-15242-0_15

Download citation

Publish with us

Policies and ethics