Skip to main content

Part of the book series: Shock Wave and High Pressure Phenomena ((SHOCKWAVE))

  • 804 Accesses

Abstract

Finite strain theories are described for brittle anisotropic single crystals and polycrystals undergoing shock compression loading, wherein inelastic deformation may arise from fracture and crack sliding, pore crushing, bulking, and stress-induced amorphization. The internal energy function depends on a logarithmic measure of thermoelastic material strain, entropy, and internal state variables accounting for defect accumulation, for example effects of micro-cracks on the tangent stiffness of the solid. Versions of the theory with pertinent mechanisms enabled are applied towards planar shock loading of single crystals of quartz and polycrystalline boron carbide ceramic. Analytical or numerical solutions to these problems provide close agreement with Hugoniot data and lend insight into the physical mechanisms responsible for strength deterioration at shock stresses exceeding the Hugoniot elastic limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Addessio, F., Johnson, J.: A constitutive model for the dynamic response of brittle materials. J. Appl. Phys. 67, 3275–3286 (1990)

    Article  ADS  Google Scholar 

  2. Ahrens, T., Gregson, V.: Shock compression of crustal rocks: data for quartz, calcite, and plagioclase rocks. J. Geophys. Res. 69, 4839–4874 (1964)

    Article  ADS  Google Scholar 

  3. An, Q., Goddard, W.: Atomistic origin of brittle failure of boron carbide from large-scale reactive dynamics simulations: suggestions toward improved ductility. Phys. Rev. Lett. 115, 105051 (2015)

    Google Scholar 

  4. Antoun, T., Curran, D., Seaman, L., Kanel, G., Razorenov, S., Utkin, A.: Spall Fracture. Springer, New York (2002)

    Google Scholar 

  5. Barton, N., Wenk, H.R.: Dauphiné twinning in polycrystalline quartz. Model. Simul. Mater. Sci. Eng. 15, 369–384 (2009)

    Article  ADS  Google Scholar 

  6. Bazant, Z., Caner, F., Carol, I., Adley, M., Akers, S.: Microplane model M4 for concrete. I: formulation with work-conjugate deviatoric stress. ASCE J. Eng. Mech. 126, 944–953 (2000)

    Google Scholar 

  7. Born, M.: Thermodynamics of crystals and melting. J. Chem. Phys. 7, 591–603 (1939)

    Article  ADS  Google Scholar 

  8. Born, M.: On the stability of crystal lattices. I. Proceedings of the Cambridge Philosophical Society 36, 160–172 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Bourne, N.: Shock-induced brittle failure of boron carbide. Proc. R. Soc. Lond. A 458, 1999–2006 (2002)

    Article  ADS  Google Scholar 

  10. Bourne, N.: The relation of failure under 1D shock to the ballistic performance of brittle materials. Int. J. Impact Eng. 35, 674–683 (2008)

    Article  Google Scholar 

  11. Brace, W., Paulding, B., Scholz, C.: Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. 71, 3939–3953 (1966)

    Article  ADS  Google Scholar 

  12. Brugger, K.: Thermodynamic definition of higher order elastic constants. Phys. Rev. 133, A1611–A1612 (1964)

    Article  ADS  MATH  Google Scholar 

  13. Brugger, K.: Pure modes for elastic waves in crystals. J. Appl. Phys. 36, 759–768 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  14. Carroll, M., Holt, A.: Suggested modification of the p − α model for porous materials. J. Appl. Phys. 43, 759–761 (1972)

    Article  ADS  Google Scholar 

  15. Chen, M., McCauley, J., Hemker, K.: Shock-induced localized amorphization in boron carbide. Science 299, 1563–1566 (2003)

    Article  ADS  Google Scholar 

  16. Chocron, S., Anderson, C., Dannemann, K., Nicholls, A., King, N.: Intact and predamaged boron carbide strength under moderate confinement pressures. J. Am. Ceram. Soc. 95, 350–357 (2012)

    Article  Google Scholar 

  17. Clayton, J.: Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation. J. Mech. Phys. Solids 53, 261–301 (2005)

    Article  ADS  MATH  Google Scholar 

  18. Clayton, J.: Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys. Int. J. Solids Struct. 42, 4613–4640 (2005)

    Article  MATH  Google Scholar 

  19. Clayton, J.: Continuum multiscale modeling of finite deformation plasticity and anisotropic damage in polycrystals. Theor. Appl. Fract. Mech. 45, 163–185 (2006)

    Article  Google Scholar 

  20. Clayton, J.: A model for deformation and fragmentation in crushable brittle solids. Int. J. Impact Eng. 35, 269–289 (2008)

    Article  Google Scholar 

  21. Clayton, J.: A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire. Proc. R. Soc. Lond. A 465, 307–334 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Clayton, J.: Deformation, fracture, and fragmentation in brittle geologic solids. Int. J. Fract. 173, 151–172 (2010)

    Article  MATH  Google Scholar 

  23. Clayton, J.: Modeling finite deformations in trigonal ceramic crystals with lattice defects. Int. J. Plast. 26, 1357–1386 (2010)

    Article  MATH  Google Scholar 

  24. Clayton, J.: Modeling nonlinear electromechanical behavior of shocked silicon carbide. J. Appl. Phys. 107, 013520 (2010)

    Article  ADS  Google Scholar 

  25. Clayton, J.: A nonlinear thermomechanical model of spinel ceramics applied to aluminum oxynitride (AlON). J. Appl. Mech. 78, 011013 (2011)

    Article  ADS  Google Scholar 

  26. Clayton, J.: Nonlinear Mechanics of Crystals. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  27. Clayton, J.: Aspects of differential geometry and tensor calculus in anholonomic configuration space. In: Greuel, G.M. (ed.) Oberwolfach Reports, vol. 9, pp. 898–900. European Mathematical Society, Zurich (2012)

    Google Scholar 

  28. Clayton, J.: On anholonomic deformation, geometry, and differentiation. Math. Mech. Solids 17, 702–735 (2012)

    Article  MathSciNet  Google Scholar 

  29. Clayton, J.: Towards a nonlinear elastic representation of finite compression and instability of boron carbide ceramic. Philos. Mag. 92, 2860–2893 (2012)

    Article  ADS  Google Scholar 

  30. Clayton, J.: Mesoscale modeling of dynamic compression of boron carbide polycrystals. Mech. Res. Commun. 49, 57–64 (2013)

    Article  Google Scholar 

  31. Clayton, J.: Nonlinear Eulerian thermoelasticity for anisotropic crystals. J. Mech. Phys. Solids 61, 1983–2014 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Clayton, J.: An alternative three-term decomposition for single crystal deformation motivated by non-linear elastic dislocation solutions. Q. J. Mech. Appl. Math. 67, 127–158 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Clayton, J.: Analysis of shock compression of strong single crystals with logarithmic thermoelastic-plastic theory. Int. J. Eng. Sci. 79, 1–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Clayton, J.: Differential Geometry and Kinematics of Continua. World Scientific, Singapore (2014)

    Book  Google Scholar 

  35. Clayton, J.: Finite strain analysis of shock compression of brittle solids applied to titanium diboride. Int. J. Impact Eng. 73, 56–65 (2014)

    Article  Google Scholar 

  36. Clayton, J.: Phase field theory and analysis of pressure-shear induced amorphization and failure in boron carbide ceramic. AIMS Mater. Sci. 1, 143–158 (2014)

    Article  Google Scholar 

  37. Clayton, J.: Shock compression of metal crystals: a comparison of Eulerian and Lagrangian elastic-plastic theories. Int. J. Appl. Mech. 6, 1450048 (2014)

    Article  Google Scholar 

  38. Clayton, J.: Generalized finsler geometric continuum physics with applications in fracture and phase transformations. Zeitschrift fur Angewandte Mathematik und Physik (ZAMP) 68, 9 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Clayton, J., Bliss, K.: Analysis of intrinsic stability criteria for isotropic third-order Green elastic and compressible neo-Hookean solids. Mech. Mater. 68, 104–119 (2014)

    Article  Google Scholar 

  40. Clayton, J., Knap, J.: Continuum modeling of twinning, amorphization, and fracture: theory and numerical simulations. Contin. Mech. Thermodyn. 30, 421–455 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Clayton, J., Kraft, R.: Mesoscale modeling of dynamic failure of ceramic polycrystals. In: Swab, J. (ed.) Advances in Ceramic Armor, vol. 7, pp. 237–248. Wiley, New York (2011)

    Chapter  Google Scholar 

  42. Clayton, J., McDowell, D.: Finite polycrystalline elastoplasticity and damage: multiscale kinematics. Int. J. Solids Struct. 40, 5669–5688 (2003)

    Article  MATH  Google Scholar 

  43. Clayton, J., McDowell, D.: A multiscale multiplicative decomposition for elastoplasticity of polycrystals. Int. J. Plast. 19, 1401–1444 (2003)

    Article  MATH  Google Scholar 

  44. Clayton, J., McDowell, D.: Homogenized finite elastoplasticity and damage: theory and computations. Mech. Mater. 36, 799–824 (2004)

    Article  Google Scholar 

  45. Clayton, J., Tonge, A.: A nonlinear anisotropic elastic-inelastic constitutive model for polycrystalline ceramics and minerals with application to boron carbide. Int. J. Solids Struct. 64–65, 191–207 (2015)

    Article  Google Scholar 

  46. Clayton, J., McDowell, D., Bammann, D.: A multiscale gradient theory for elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 42, 427–457 (2004)

    Article  MATH  Google Scholar 

  47. Clayton, J., Bammann, D., McDowell, D.: Anholonomic configuration spaces and metric tensors in finite strain elastoplasticity. Int. J. Non Linear Mech. 39, 1039–1049 (2004)

    Article  MATH  Google Scholar 

  48. Clayton, J., Bammann, D., McDowell, D.: A geometric framework for the kinematics of crystals with defects. Philos. Mag. 85, 3983–4010 (2005)

    Article  ADS  Google Scholar 

  49. Clayton, J., McDowell, D., Bammann, D.: Modeling dislocations and disclinations with finite micropolar elastoplasticity. Int. J. Plast. 22, 210–256 (2006)

    Article  MATH  Google Scholar 

  50. Clayton, J., Chung, P., Grinfeld, M., Nothwang, W.: Kinematics, electromechanics, and kinetics of dielectric and piezoelectric crystals with lattice defects. Int. J. Eng. Sci. 46, 10–30 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Clayton, J., Kraft, R., Leavy, R.: Mesoscale modeling of nonlinear elasticity and fracture in ceramic polycrystals under dynamic shear and compression. Int. J. Solids Struct. 49, 2686–2702 (2012)

    Article  Google Scholar 

  52. Clayton, J., Leavy, R., Kraft, R.: Dynamic compressibility, shear strength, and fracture behavior of ceramic microstructures predicted from mesoscale models. In: Elert, M., Buttler, W., Borg, J., Jordan, J., Vogler, T. (eds.) Shock Compression of Condensed Matter, vol. 1426, pp. 1039–1044. AIP Conference Proceedings (2012)

    Google Scholar 

  53. Clayton, J., Hartley, C., McDowell, D.: The missing term in the decomposition of finite deformation. Int. J. Plast. 52, 51–76 (2014)

    Article  Google Scholar 

  54. Coleman, B., Gurtin, M.: Thermodynamics with internal state variables. J. Chem. Phys. 47, 597–613 (1967)

    Article  ADS  Google Scholar 

  55. Curran, D., Seaman, L., Cooper, T., Shockey, D.: Micromechanical model for comminution and granular flow of brittle material under high strain rate application to penetration of ceramic targets. Int. J. Impact Eng. 13, 53–83 (1993)

    Article  Google Scholar 

  56. Dandekar, D.: Shear strengths of aluminum nitride and titanium diboride under plane shock wave compression. J. Phys. IV 4, 379–384 (1994)

    Google Scholar 

  57. Dandekar, D.: Shock response of boron carbide. Tech. Rep. ARL-TR-2456, US Army Research Laboratory, Aberdeen Proving Ground MD (2001)

    Google Scholar 

  58. Dandekar, D., Benfanti, D.: Strength of titanium diboride under shock wave loading. J. Appl. Phys. 73, 673–679 (1993)

    Article  ADS  Google Scholar 

  59. Del Piero, G., Owen, D.: Structured deformations of continua. Arch. Ration. Mech. Anal. 124, 99–155 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  60. Deshpande, V., Gamble, E., Compton, B., McMeeking, R., Evans, A., Zok, F.: A constitutive description of the inelastic response of ceramics. J. Am. Ceram. Soc. 94, S204–S214 (2011)

    Article  Google Scholar 

  61. Dodd, S., Saunders, G., James, B.: Temperature and pressure dependences of the elastic properties of ceramic boron carbide (B4C). J. Mater. Sci. 37, 2731–2736 (2002)

    Article  ADS  Google Scholar 

  62. Domnich, V., Reynaud, S., Haber, R., Chhowalla, M.: Boron carbide: structure, properties, and stability under stress. J. Am. Ceram. Soc. 94, 3625–3628 (2011)

    Article  Google Scholar 

  63. Eshelby, J.: The elastic energy-momentum tensor. J. Elast. 5, 321–335 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  64. Espinosa, H.: On the dynamic shear resistance of ceramic composites and its dependence on applied multiaxial deformation. Int. J. Solids Struct. 32, 3105–3128 (1995)

    Article  Google Scholar 

  65. Espinosa, H., Zavattieri, P., Dwivedi, S.: A finite deformation continuum/discrete model for the description of fragmentation and damage in brittle materials. J. Mech. Phys. Solids 46, 1909–1942 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Ewart, L., Dandekar, D.: Relationship between the shock response and microstructural features of titanium diboride (TiB2). In: Schmidt, S., Shaner, J., Samara, G., Ross, M. (eds.) Shock Compression of Condensed Matter, pp. 1201–1204. AIP, New York (1994)

    Google Scholar 

  67. Fanchini, G., McCauley, J., Chhowalla, M.: Behavior of disordered boron carbide under stress. Phys. Rev. Lett. 97, 035502 (2006)

    Article  ADS  Google Scholar 

  68. Foulk, J., Vogler, T.: A grain-scale study of spall in brittle materials. Int. J. Fract. 163, 225–242 (2010)

    Article  MATH  Google Scholar 

  69. Fowles, R.: Dynamic compression of quartz. J. Geophys. Res. 72, 5729–5742 (1967)

    Article  ADS  Google Scholar 

  70. Ge, D., Domnich, V., Juliano, T., Stach, E., Gogotsi, Y.: Structural damage in boron carbide under contact loading. Acta Mater. 52, 3921–3927 (2004)

    Article  Google Scholar 

  71. Germain, P., Lee, E.: On shock waves in elastic-plastic solids. J. Mech. Phys. Solids 21, 359–382 (1973)

    Article  ADS  MATH  Google Scholar 

  72. Ghosh, D., Subhash, G., Lee, C., Yap, Y.: Strain-induced formation of carbon and boron clusters in boron carbide during dynamic indentation experiments. Appl. Phys. Lett. 91, 061910 (2007)

    Article  ADS  Google Scholar 

  73. Ghosh, D., Subhash, G., Sudarshan, T., Radhakrishnan, R., Gao, X.L.: Dynamic indentation response of fine-grained boron carbide. J. Am. Ceram. Soc. 90, 1850–1857 (2007)

    Article  Google Scholar 

  74. Gilman, J.: Electronic Basis of the Strength of Materials. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  75. Goel, P., Choudhury, N., Chaplot, S.: Lattice dynamics and Born instability in yttrium aluminum garnet, Y3Al5O12. J. Phys. Condens. Matter 22, 065401 (2010)

    Article  ADS  Google Scholar 

  76. Grady, D.: Shock-wave compression of brittle solids. Mech. Mater. 29, 181–203 (1998)

    Article  ADS  Google Scholar 

  77. Grady, D.: Dynamic equation of state and strength of boron carbide. In: Swab, J. (ed.) Ceramic Engineering Sci. Proceedings of the Adv. Ceramic Armor VI, pp. 115–142. Wiley, Hoboken NJ (2010)

    Chapter  Google Scholar 

  78. Grady, D.: Adiabatic shear failure in brittle solids. Int. J. Impact Eng. 38, 661–667 (2011)

    Article  Google Scholar 

  79. Grady, D., Wise, J.: Dynamic properties of ceramic materials. Tech. Rep. SAND93-0610, Sandia National Laboratories, Albuquerque NM (1993)

    Google Scholar 

  80. Graham, E., Ahrens, T.: Shock-wave compression of iron-silicate garnet. J. Geophys. Res. 78, 375–392 (1973)

    Article  ADS  Google Scholar 

  81. Graham, R., Brooks, W.: Shock-wave compression of sapphire from 15 to 420 kbar. The effects of large anisotropic compressions. J. Phys. Chem. Solids 32, 2311–2330 (1971)

    Article  Google Scholar 

  82. Grasso, S., Hu, C., Vasylkiv, O., Suzuki, T., Guo, S., Nishimura, T., Sakka, Y.: High-hardness B4C textured by a strong magnetic field technique. Scr. Mater. 64, 256–259 (2011)

    Article  Google Scholar 

  83. Grechka, V., Kachanov, M.: Effective elasticity of fractured rocks: a snapshot of the work in progress. Geophysics 71, W45–W58 (2006)

    Article  Google Scholar 

  84. Halm, D., Dragon, A., Charles, Y.: A modular damage model for quasi-brittle solids–interaction between initial and induced anisotropy. Arch. Appl. Mech. 72, 498–510 (2002)

    Article  ADS  MATH  Google Scholar 

  85. Herrmann, W.: Constitutive equation for the dynamic compaction of ductile porous materials. J. Appl. Phys. 40, 2490–2499 (1969)

    Article  ADS  Google Scholar 

  86. Jog, C.: The explicit determination of the logarithm of a tensor and its derivative. J. Elast. 93, 141–148 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  87. Johnson, J.: Calculation of plane-wave propagation in anisotropic elastic-plastic solids. J. Appl. Phys. 43, 2074–2082 (1972)

    Article  ADS  Google Scholar 

  88. Johnson, J.: Wave velocities in shock-compressed cubic and hexagonal single crystals above the elastic limit. J. Phys. Chem. Solids 43, 609–616 (1974)

    Article  ADS  Google Scholar 

  89. Kraft, R., Molinari, J.: A statistical investigation of the effects of grain boundary properties on transgranular fracture. Acta Mater. 56, 4739–4749 (2008)

    Article  Google Scholar 

  90. Kraft, R., Molinari, J., Ramesh, K., Warner, D.: Computational micromechanics of dynamic compressive loading of a brittle polycrystalline material using a distribution of grain boundary properties. J. Mech. Phys. Solids 56, 2618–2641 (2008)

    Article  ADS  MATH  Google Scholar 

  91. LaSalvia, J.: Recent progress on the influence of microstructure and mechanical properties on ballistic performance. Ceram. Trans. 134, 557–570 (2002)

    Google Scholar 

  92. LaSalvia, J., McCauley, J.: Inelastic deformation mechanisms and damage in structural ceramics subjected to high-velocity impact. Int. J. Appl. Ceram. Technol. 7, 595–605 (2010)

    Article  Google Scholar 

  93. LaSalvia, J., Normandia, M., MacKenzie, D., Miller, H.: Sphere impact induced damage in ceramics: III. Analysis. Ceram. Eng. Sci. Proc. 26, 193–202 (2005)

    Article  Google Scholar 

  94. LaSalvia, J., McCuiston, R., Fanchini, G., McCauley, J., Chhowalla, M., Miller, H., MacKenzie, D.: Shear localization in a sphere-impacted armor-grade boron carbide. In: Proceedings of the 23rd International Symposium on Ballistics, pp. 1329–1337. Tarragona, Spain (2007)

    Google Scholar 

  95. Leavy, R., Brannon, R., Strack, O.: The use of sphere indentation experiments to characterize ceramic damage models. Int. J. Appl. Ceram. Technol. 7, 606–615 (2010)

    Article  Google Scholar 

  96. Leavy, R., Clayton, J., Strack, O., Brannon, R., Strassburger, E.: Edge on impact simulations and experiments. In: Procedia Engineering, vol. 58, pp. 445–452. Elsevier, Amsterdam (2013)

    Article  Google Scholar 

  97. Leroux, H., Reimold, W., Koeberl, C., Hornemann, U., Doukhan, J.C.: Experimental shock deformation in zircon: a transmission electron microscopy study. Earth Planet. Sci. Lett. 169, 291–301 (1999)

    Article  ADS  Google Scholar 

  98. Li, Y., Zhao, Y., Liu, W., Zhang, Z., Vogt, R., Lavernia, E., Schoenung, J.: Deformation twinning in boron carbide particles within nanostructured Al 5083/B4C metal matrix composites. Philos. Mag. 90, 783–792 (2010)

    Article  ADS  Google Scholar 

  99. Liu, J., Vohra, K.: Sm:YAG optical pressure sensor to 180 GPa: calibration and structural disorder. Appl. Phys. Lett. 64, 3386–3388 (1994)

    Article  ADS  Google Scholar 

  100. Lloyd, J., Clayton, J., Becker, R., McDowell, D.: Simulation of shock wave propagation in single crystal and polycrystalline aluminum. Int. J. Plast. 60, 118–144 (2014)

    Article  Google Scholar 

  101. Lloyd, J., Clayton, J., Austin, R., McDowell, D.: Shock compression modeling of metallic single crystals: comparison of finite difference, steady wave, and analytical solutions. Adv. Model. Simul. Eng. Sci. 2, 14 (2015)

    Article  Google Scholar 

  102. Marsden, J., Hughes, T.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs NJ (1983)

    MATH  Google Scholar 

  103. Maugin, G.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993)

    Book  MATH  Google Scholar 

  104. McCauley, J., Swab, J., Hilton, C., Shanholtz, E., Portune, A.: Quantifying bulk plasticity and predicting transition velocities for armor ceramics using hardness indentation tests. Tech. Rep. ARL-TR-6050, US Army Research Laboratory, Aberdeen Proving Ground MD (2012)

    Google Scholar 

  105. McDowell, D.: Viscoplasticity of heterogeneous metallic materials. Mater. Sci. Eng. R. Rep. 62, 67–123 (2008)

    Article  Google Scholar 

  106. McSkimin, H., Andreatch, P., Thurston, R.: Elastic moduli of quartz versus hydrostatic pressure at 25∘ and − 195.8∘C. J. Appl. Phys. 36, 1624–1632 (1965)

    Article  ADS  Google Scholar 

  107. Molinari, A., Ravichandran, G.: Fundamental structure of steady plastic shock waves in metals. J. Appl. Phys. 95, 1718–1732 (2004)

    Article  ADS  Google Scholar 

  108. Moss, W., Gupta, Y.: A constitutive model describing dilatancy and cracking in brittle rocks. J. Geophys. Res. 87, 2985–2998 (1982)

    Article  ADS  Google Scholar 

  109. Moynihan, T., LaSalvia, J., Burkins, M.: Analysis of shatter gap phenomenon in a boron carbide/composite laminate armor system. In: Proceedings of the 20th International Symposium on Ballistics, pp. 1096–1103. Orlando, FL (2002)

    Google Scholar 

  110. Munson, D., Lawrence, R.: Dynamic deformation of polycrystalline alumina. J. Appl. Phys. 50, 6272–6282 (1979)

    Article  ADS  Google Scholar 

  111. Murrell, S.: The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures. Geophys. J. R. Astron. Soc. 10, 231–281 (1965)

    Article  ADS  Google Scholar 

  112. Paliwal, B., Ramesh, K.: Effect of crack growth dynamics on the rate-sensitive behavior of hot-pressed boron carbide. Scr. Mater. 57, 481–484 (2007)

    Article  Google Scholar 

  113. Perrin, G., Delannoy-Coutris, M.: Analysis of plane elastic-plastic shock-waves from the fourth-order anharmonic theory. Mech. Mater. 2, 139–153 (1983)

    Article  Google Scholar 

  114. Pilladi, T., Panneerselvam, G., Anthonysamy, S., Ganesan, V.: Thermal expansion of nanocrystalline boron carbide. Ceram. Int. 38, 3723–3728 (2012)

    Article  Google Scholar 

  115. Poirier, J.P., Tarantola, A.: A logarithmic equation of state. Phys. Earth Planet. Inter. 109, 1–8 (1998)

    Article  ADS  Google Scholar 

  116. Rajendran, A.: Modeling the impact behavior of AD85 ceramic under multiaxial loading. Int. J. Impact Eng. 15, 749–768 (1994)

    Article  Google Scholar 

  117. Rajendran, A., Grove, D.: Modeling the shock response of silicon carbide, boron carbide, and titanium diboride. Int. J. Impact Eng. 18, 611–631 (1996)

    Article  Google Scholar 

  118. Ramos, K., Jensen, B., Iverson, A., Yeager, J., Carlson, C., Montgomery, D., Thompson, D., Fezzaa, K., Hooks, D.: In situ investigation of the dynamic response of energetic materials using IMPULSE at the Advanced Photon Source. J. Phys. Conf. Ser. 500, 142028 (2014)

    Article  Google Scholar 

  119. Ravichandran, G., Subhash, G.: A micromechanical model for high strain rate behavior of ceramics. Int. J. Solids Struct. 32, 2627–2646 (1995)

    Article  MATH  Google Scholar 

  120. Reddy, K., Liu, P., Hirata, A., Fujita, T., Chen, M.: Atomic structure of amorphous shear bands in boron carbide. Nat. Commun. 4, 2483 (2013)

    Article  ADS  Google Scholar 

  121. Regueiro, R., Bammann, D., Marin, E., Garikipati, K.: A nonlocal phenomenological anisotropic finite deformation plasticity model accounting for dislocation defects. J. Eng. Mater. Technol. 124, 380–387 (2002)

    Article  Google Scholar 

  122. Reina, C., Schlomerkemper, A., Conti, S.: Derivation of F = F e F p as the continuum limit of crystalline slip. J. Mech. Phys. Solids 89, 231–254 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  123. Rice, J.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455 (1971)

    Article  ADS  MATH  Google Scholar 

  124. Rosenberg, Z.: On the shear strength of shock loaded brittle solids. J. Appl. Phys. 76, 1543–1546 (1994)

    Article  ADS  Google Scholar 

  125. Satapathy, S.: Dynamic spherical cavity expansion in brittle ceramics. Int. J. Solids Struct. 38, 5833–5845 (2001)

    Article  MATH  Google Scholar 

  126. Satapathy, S., Dandekar, D.: On the source of inelasticity in ceramics. In: Swab, J. (ed.) Advances in Ceramic Armor VIII, pp. 31–40. Wiley, Hoboken, NJ (2012)

    Chapter  Google Scholar 

  127. Scheidler, M., Wright, T.: A continuum framework for finite viscoplasticity. Int. J. Plast. 17, 1033–1085 (2001)

    Article  MATH  Google Scholar 

  128. Schultz, R., Jensen, M., Bradt, R.: Single crystal cleavage of brittle materials. Int. J. Fract. 65, 291–312 (1994)

    Article  Google Scholar 

  129. Steinberg, D.: Computer studies of the dynamic strength of ceramics. J. Phys. III 1, 837–844 (1991)

    Google Scholar 

  130. Subhash, G., Maiti, S., Geubelle, P., Ghosh, D.: Recent advances in dynamic indentation fracture, impact damage and fragmentation of ceramics. J. Am. Ceram. Soc. 91, 2777–2791 (2008)

    Article  Google Scholar 

  131. Taylor, D., Wright, T., McCauley, J.: First principles calculation of stress induced amorphization in armor ceramics. Tech. Rep. ARL-MR-0779, US Army Research Laboratory, Aberdeen Proving Ground MD (2011)

    Google Scholar 

  132. Taylor, D., McCauley, J., Wright, T.: The effects of stoichiometry on the mechanical properties of icosahedral boron carbide under loading. J. Phys. Condens. Matt. 24, 505402 (2012)

    Article  Google Scholar 

  133. Thurston, R.: Waves in solids. In: Truesdell, C. (ed.) Handbuch der Physik, vol. VI, pp. 109–308. Springer, Berlin (1974)

    Google Scholar 

  134. Thurston, R., McSkimin, H., Andreatch, P.: Third-order elastic coefficients of quartz. J. Appl. Phys. 37, 267–275 (1966)

    Article  ADS  Google Scholar 

  135. Tonge, A., Ramesh, K.: Multi-scale defect interactions in high rate brittle material failure. Part I: model formulation and application to ALON. J. Mech. Phys. Solids 86, 117–149 (2016)

    Google Scholar 

  136. Tonge, A., Ramesh, K.: Multi-scale defect interactions in high-rate failure of brittle materials. Part II: application to design of protection materials. J. Mech. Phys. Solids 86, 237–258 (2016)

    Google Scholar 

  137. Tonge, A., Kimberley, J., Ramesh, K.: A consistent scaling framework for simulating high rate brittle failure problems. In: Procedia Engineering, vol. 58, pp. 692–701. Elsevier, Amsterdam (2013)

    Article  Google Scholar 

  138. Vogler, T., Clayton, J.: Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling. J. Mech. Phys. Solids 56, 297–335 (2008)

    Article  ADS  Google Scholar 

  139. Vogler, T., Reinhart, W., Chhabildas, L.: Dynamic behavior of boron carbide. J. Appl. Phys. 95, 4173–4183 (2004)

    Article  ADS  Google Scholar 

  140. Wackerle, J.: Shock wave compression of quartz. J. Appl. Phys. 33, 922–937 (1962)

    Article  ADS  Google Scholar 

  141. Wallace, D.: Thermodynamics of Crystals. Wiley, New York (1972)

    Book  Google Scholar 

  142. Yan, X., Tang, Z., Zhang, L., Guo, J., Jin, C., Zhang, Y., Goto, T., McCauley, J., Chen, M.: Depressurization amorphization of single-crystal boron carbide. Phys. Rev. Lett. 102, 075505 (2009)

    Article  ADS  Google Scholar 

  143. Zhang, Y., Mashimo, T., Uemura, Y., Uchino, M., Kodama, M., Shibata, K., Fukuoka, K., Kikuchi, M., Kobayashi, T., Sekine, T.: Shock compression behaviors of boron carbide (B4C). J. Appl. Phys. 100, 113536 (2006)

    Article  ADS  Google Scholar 

  144. Zubelewicz, A., Rougier, E., Ostoja-Starzewksi, M., Knight, E., Bradley, C., Viswanathan, H.: A mechanisms-based model for dynamic behavior and fracture of geomaterials. Int. J. Rock Mech. Min. Sci. 72, 277–282 (2014)

    Article  Google Scholar 

  145. Zukas, J., Nicholas, T., Swift, H., Greszczuk, L., Curran, D.: Impact Dynamics. Krieger, Malabar, FL (1992)

    Google Scholar 

  146. Zurek, A., Meyers, M.: Microstructural aspects of dynamic failure. In: Davison, L., Grady, D., Shahinpoor, M. (eds.) High-Pressure Shock Compression of Solids II. Springer, New York (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Clayton, J.D. (2019). Fracture and Flow in Brittle Solids. In: Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids. Shock Wave and High Pressure Phenomena. Springer, Cham. https://doi.org/10.1007/978-3-030-15330-4_10

Download citation

Publish with us

Policies and ethics