Skip to main content

Toxicity of Nanomaterials in Plants and Environment

  • Chapter
  • First Online:
Plant Nanobionics

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Nowadays, due to the suitable properties of engineered nanomaterials (NMs), their use in the industries has expanded. The expansion of nanomaterials production will inevitably lead to its release into the environment. The presence of NMs in environment causes harmful effects on plants and aquatic life. Furthermore, engineered nanomaterials (ENMs) can interact with some environmental pollutants (e.g., metals and organic pollutants), which may consequence in a variation of the ecosystem behavior and toxicity of these pollutants. Plants include of a very vital living component of the earthly ecosystem. Research on the impact of ENMs on plant growth illustrated that in the extra content ENMs affect the seed germination.

This chapter presents an exact previous literature review about the toxicity of two groups of NMs such as (carbon based and metal/metal oxide) in plant as well as the effect of ENMs on the toxicity of environmental pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Transmission electron microscope.

  2. 2.

    Median lethal concentration.

  3. 3.

    Polychlorinated biphenyls 52.

  4. 4.

    Black carbon.

  5. 5.

    Tributyltin.

  6. 6.

    Reactive oxygen species.

  7. 7.

    Pentachlorophenol.

  8. 8.

    Gold nanoparticles.

  9. 9.

    Hexachlorobenzene.

  10. 10.

    3,3′,4,4′-tetrachlorobiphenyl.

  11. 11.

    Pentachlorobenzene.

References

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-Ur-Rehman M, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162

    Article  CAS  Google Scholar 

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    Article  CAS  PubMed  Google Scholar 

  • Al-Ghamdi AA, Gupta R, Kahol P, Wageh S, Al-Turki Y, El Shirbeeny W, Yakuphanoglu F (2014) Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell. Solid State Commun 183:56–59

    Article  CAS  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006) Zinc through the three domains of life. J Proteome Res 5:3173–3178

    Article  CAS  PubMed  Google Scholar 

  • Anjum NA, Singh N, Singh MK, Shah ZA, Duarte AC, Pereira E, Ahmad I (2013) Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). J Nanopart Res 15:1770

    Article  CAS  Google Scholar 

  • Anjum NA, Singh N, Singh MK, Sayeed I, Duarte AC, Pereira E, Ahmad I (2014) Single-bilayer graphene oxide sheet impacts and underlying potential mechanism assessment in germinating faba bean (Vicia faba L.). Sci Total Environ 472:834–841

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna P, Zaidi M (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

    Article  CAS  Google Scholar 

  • Ball P (2002) Natural strategies for the molecular engineer. Nanotechnology 13:R15

    Article  CAS  Google Scholar 

  • Barbieri E, Campos-Garcia J, Martinez DS, Da Silva JRM, Alves OL, Rezende KF (2016) Histopathological effects on gills of Nile Tilapia (Oreochromis niloticus, Linnaeus, 1758) exposed to Pb and carbon nanotubes. Microsc Microanal 22:1162–1169

    Article  CAS  PubMed  Google Scholar 

  • Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13:1–37

    Article  Google Scholar 

  • Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes--the route toward applications. Science 297:787–792

    Article  CAS  PubMed  Google Scholar 

  • Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49:3907–3919

    Article  CAS  Google Scholar 

  • Belava V, Panyuta O, Yakovleva G, Pysmenna Y, Volkogon M (2017) The effect of silver and copper nanoparticles on the wheat—Pseudocercosporella herpotrichoides Pathosystem. Nanoscale Res Lett 12:250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianchini A, Wood CM (2003) Mechanism of acute silver toxicity in Daphnia magna. Environ Toxicol Chem 22:1361–1367

    Article  CAS  PubMed  Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  CAS  PubMed  Google Scholar 

  • Bona E, Marsano F, Cavaletto M, Berta G (2007) Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics 7:1121–1130

    Article  CAS  PubMed  Google Scholar 

  • Canesi L, Ciacci C, Balbi T (2015) Interactive effects of nanoparticles with other contaminants in aquatic organisms: friend or foe? Mar Environ Res 111:128–134

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Dixon J, Turner F (1980) Iron coatings on Rice roots: morphology and models of development 1. Soil Sci Soc Am J 44:1113–1119

    Article  CAS  Google Scholar 

  • Chen C, Song Y, Zhuang K, Li L, Xia Y, Shen Z (2015a) Proteomic analysis of copper-binding proteins in excess copper-stressed roots of two rice (Oryza sativa L.) varieties with different Cu tolerances. PLoS One 10:e0125367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Qian Y, Li H, Cheng Y, Zhao M (2015b) The reduced bioavailability of copper by nano-TiO 2 attenuates the toxicity to Microcystis aeruginosa. Environ Sci Pollut Res 22:12407–12414

    Article  CAS  Google Scholar 

  • Cheng Y, Yin L, Lin S, Wiesner M, Bernhardt E, Liu J (2011) Toxicity reduction of polymer-stabilized silver nanoparticles by sunlight. J Phys Chem C 115:4425–4432

    Article  CAS  Google Scholar 

  • Cheng F, Liu Y-F, Lu G-Y, Zhang X-K, Xie L-L, Yuan C-F, Xu B-B (2016) Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentration. J Plant Physiol 193:57–63

    Article  CAS  PubMed  Google Scholar 

  • Cho U-H, Seo N-H (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120

    Article  CAS  Google Scholar 

  • Clarke B, Brennan E (1989) Differential cadmium accumulation and phytotoxicity in sixteen tobacco cultivars. JAPCA 39:1319–1322

    Article  CAS  Google Scholar 

  • Cui X, Wan B, Guo L-H, Yang Y, Ren X (2016) Insight into the mechanisms of combined toxicity of single-walled carbon nanotubes and nickel ions in macrophages: role of P2X7 receptor. Environ Sci Technol 50:12473–12483

    Article  CAS  PubMed  Google Scholar 

  • D’alessandro A, Taamalli M, Gevi F, Timperio AM, Zolla L, Ghnaya T (2013) Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteome Res 12:4979–4997

    Article  PubMed  CAS  Google Scholar 

  • Da Costa M, Sharma P (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Article  CAS  Google Scholar 

  • Dai H, Cao F, Chen X, Zhang M, Ahmed IM, Chen Z-H, Li C, Zhang G, Wu F (2013) Comparative proteomic analysis of aluminum tolerance in Tibetan wild and cultivated barleys. PLoS One 8:e63428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547

    Article  CAS  PubMed  Google Scholar 

  • Deng R, Lin D, Zhu L, Majumdar S, White JC, Gardea-Torresdey JL, Xing B (2017) Nanoparticle interactions with co-existing contaminants: joint toxicity, bioaccumulation and risk. Nanotoxicology 11:591–612

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Mclean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ (2013) Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix. Environ Sci Technol 47:1082–1090

    Article  CAS  PubMed  Google Scholar 

  • Duressa D, Soliman K, Chen D (2010) Identification of aluminum responsive genes in Al-tolerant soybean line PI 416937. Int J Plant Genomics 2010:164862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duressa D, Soliman K, Taylor R, Senwo Z (2011) Proteomic analysis of soybean roots under aluminum stress. Int J Plant Genomics 2011:282531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elghniji K, Hentati O, Mlaik N, Mahfoudh A, Ksibi M (2012) Photocatalytic degradation of 4-chlorophenol under P-modified TiO2/UV system: kinetics, intermediates, phytotoxicity and acute toxicity. J Environ Sci 24:479–487

    Article  CAS  Google Scholar 

  • Fageria N, Carvalho J (1982) Influence of aluminum in nutrient solutions on chemical composition in upland rice cultivars. Plant Soil 69:31–44

    Article  CAS  Google Scholar 

  • Fang L, Borggaard OK, Holm PE, Hansen HCB, Cedergreen N (2011) Toxicity and uptake of TRI-and dibutyltin in Daphnia magna in the absence and presence of nano-charcoal. Environ Toxicol Chem 30:2553–2561

    Article  CAS  PubMed  Google Scholar 

  • Fang Q, Shi X, Zhang L, Wang Q, Wang X, Guo Y, Zhou B (2015) Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J Hazard Mater 283:897–904

    Article  CAS  PubMed  Google Scholar 

  • Feizi H, Amirmoradi S, Abdollahi F, Pour SJ (2013) Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Ann Rev Res Biol 3:814–824

    CAS  Google Scholar 

  • Feretti D, Zerbini I, Zani C, Ceretti E, Moretti M, Monarca S (2007) Allium cepa chromosome aberration and micronucleus tests applied to study genotoxicity of extracts from pesticide-treated vegetables and grapes. Food Addit Contam 24:561–572

    Article  CAS  PubMed  Google Scholar 

  • Ferguson EA, Hogstrand C (1998) Acute silver toxicity to seawater-acclimated rainbow trout: influence of salinity on toxicity and silver speciation. Environ Toxicol Chem 17:589–593

    Article  CAS  Google Scholar 

  • Foltete A-S, Masfaraud J-F, Bigorgne E, Nahmani J, Chaurand P, Botta C, Labille J, Rose J, Ferard J-F, Cotelle S (2011) Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. Environ Pollut 159:2515–2522

    Article  CAS  PubMed  Google Scholar 

  • Foy CD (1988) Plant adaptation to acid, aluminum-toxic soils. Commun Soil Sci Plant Anal 19:959–987

    Article  CAS  Google Scholar 

  • Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50

    Article  CAS  PubMed  Google Scholar 

  • Fukao Y, Ferjani A, Tomioka R, Nagasaki N, Kurata R, Nishimori Y, Fujiwara M, Maeshima M (2011) iTRAQ analysis reveals mechanisms of growth defects due to excess zinc in Arabidopsis. Plant Physiol 155:1893. https://doi.org/10.1104/pp.110.169730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Liu C, Qu C, Zheng L, Yang F, Su M, Hong F (2008) Was improvement of spinach growth by nano-TiO 2 treatment related to the changes of Rubisco activase? Biometals 21:211–217

    Article  CAS  PubMed  Google Scholar 

  • Gardea-Torresdey J, Tiemann K, Gamez G, Dokken K, Cano-Aguilera I, Furenlid LR, Renner MW (2000) Reduction and accumulation of gold (III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH, and temperature dependence. Environ Sci Technol 34:4392–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glomstad B, Altin D, Sørensen L, Liu J, Jenssen BM, Booth AM (2016) Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environ Sci Technol 50:2660–2668

    Article  CAS  PubMed  Google Scholar 

  • Goodman CM, Mccusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  CAS  PubMed  Google Scholar 

  • Green S, Renault S (2008) Influence of papermill sludge on growth of Medicago sativa, Festuca rubra and Agropyron trachycaulum in gold mine tailings: a greenhouse study. Environ Pollut 151:524–531

    Article  CAS  PubMed  Google Scholar 

  • Groppa M, Rosales E, Iannone M, Benavides M (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Wu C, Song W, Jiang H, Wang X, Chen B (2009) Effect of colloidal gold nanoparticles on cell interface and their enhanced intracellular uptake of arsenic trioxide in leukemia cancer cells. J Nanosci Nanotechnol 9:4611–4617

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Carbonell E, Lattanzio G, Sagardoy R, Rodríguez-Celma J, Ruiz JJR, Matros A, Abadía A, Abadía J, López-Millán A-F (2013) Changes induced by zinc toxicity in the 2-DE protein profile of sugar beet roots. J Proteome 94:149–161

    Article  CAS  Google Scholar 

  • Han T, Fan T, Chow S-K, Zhang D (2010) Biogenic N–P-codoped TiO2: synthesis, characterization and photocatalytic properties. Bioresour Technol 101:6829–6835

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Takeuchi S, Mitsunobu S, Ok Y-S (2017) Chemical speciation of silver (Ag) in soils under aerobic and anaerobic conditions: Ag nanoparticles vs. ionic Ag. J Hazard Mater 322:318–324

    Article  CAS  PubMed  Google Scholar 

  • Hauck TS, Ghazani AA, Chan WC (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4:153–159

    Article  CAS  PubMed  Google Scholar 

  • Hego E, Bes CM, Bedon F, Palagi PM, Chaumeil P, Barre A, Claverol S, Dupuy JW, Bonneu M, Lalanne C (2014) Differential accumulation of soluble proteins in roots of metallicolous and nonmetallicolous populations of Agrostis capillaris L. exposed to Cu. Proteomics 14:1746–1758

    Article  CAS  PubMed  Google Scholar 

  • Hopff D, Wienkoop S, Luthje S (2013) The plasma membrane proteome of maize roots grown under low and high iron conditions. J Proteome 91:605–618

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids (8 pp). Environ Sci Pollut Res 13:225–232

    Article  CAS  Google Scholar 

  • Inokuchi R, Itagaki T, Wiskich JT, Nakayama K, Okada M (1997) An NADP-glutamate dehydrogenase from the green alga Bryopsis maxima. Purification and properties. Plant Cell Physiol 38:327–335

    Article  CAS  PubMed  Google Scholar 

  • Jang H, Pell LE, Korgel BA, English DS (2003) Photoluminescence quenching of silicon nanoparticles in phospholipid vesicle bilayers. J Photochem Photobiol A Chem 158:111–117

    Article  CAS  Google Scholar 

  • Jasim B, Thomas R, Mathew J, Radhakrishnan EK (2017) Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.). Saudi Pharm J 25:443–447

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Luo Y, Zhao Q, Baker A, Christie P, Wong M (2003) Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere 50:813–818

    Article  CAS  PubMed  Google Scholar 

  • Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40:328–346

    Article  CAS  PubMed  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400:396–414

    Article  CAS  PubMed  Google Scholar 

  • Justin S, Armstrong W (1991) Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa L.). New Phytol 118:49–62

    Article  CAS  Google Scholar 

  • Karamushka VI, Gadd GM (1999) Interaction of Saccharomyces cerevisiae with gold: toxicity and accumulation. Biometals 12:289–294

    Article  CAS  PubMed  Google Scholar 

  • Karmous I, Chaoui A, Jaouani K, Sheehan D, El Ferjani E, Scoccianti V, Crinelli R (2014) Role of the ubiquitin-proteasome pathway and some peptidases during seed germination and copper stress in bean cotyledons. Plant Physiol Biochem 76:77–85

    Article  CAS  PubMed  Google Scholar 

  • Karuppanapandian T, Rhee S, Kim E, Han B, Hoekenga O, Lee G (2012) Proteomic analysis of differentially expressed proteins in the roots of Columbia-0 and Landsberg erecta ecotypes of Arabidopsis thaliana in response to aluminum toxicity. Can J Plant Sci 92:1267–1282

    Article  CAS  Google Scholar 

  • Kashem MA, Kawai S (2007) Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Sci Plant Nutr 53:246–251

    Article  CAS  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36:5141–5155

    Article  CAS  PubMed  Google Scholar 

  • Khlebtsov N, Dykman L (2011) Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev 40:1647–1671

    Article  CAS  PubMed  Google Scholar 

  • Kim BS (2013) Biological synthesis of nanomaterials using plant leaf extracts. Nanotechnology (IEEE-NANO), 2013 13th IEEE Conference on, 2013. IEEE, pp 1204–1207

    Google Scholar 

  • Kim I, Lee B-T, Kim H-A, Kim K-W, Kim SD, Hwang Y-S (2016) Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere 143:99–105

    Article  CAS  PubMed  Google Scholar 

  • Kinraide TB, Ryan PR, Kochian LV (1992) Interactive effects of Al3+, H+, and other cations on root elongation considered in terms of cell-surface electrical potential. Plant Physiol 99:1461–1468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kochian LV, Hoekenga OA, Pineros MA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122:945–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180

    Article  CAS  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci 66:3–18

    Article  CAS  Google Scholar 

  • Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10:2296–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee G, Kim BS (2014) Biological reduction of graphene oxide using plant leaf extracts. Biotechnol Prog 30:463–469

    Article  CAS  PubMed  Google Scholar 

  • Lee D-Y, Fortin C, Campbell PG (2005) Contrasting effects of chloride on the toxicity of silver to two green algae, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii. Aquat Toxicol 75:127–135

    Article  CAS  PubMed  Google Scholar 

  • Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    Article  CAS  PubMed  Google Scholar 

  • Li L, Sillanpää M, Schultz E (2017) Influence of titanium dioxide nanoparticles on cadmium and lead bioaccumulations and toxicities to Daphnia magna. J Nanopart Res 19:223

    Article  CAS  Google Scholar 

  • Liu W, Zhu Y, Hu Y, Williams P, Gault A, Meharg AA, Charnock J, Smith F (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40:5730–5736

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Wu H, Ji C, Wei L, Zhao J, Yu J (2013) An integrated proteomic and metabolomic study on the chronic effects of mercury in Suaeda salsa under an environmentally relevant salinity. PLoS One 8:e64041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu T, Shen C, Wang Y, Huang C, Shi J (2014) New insights into regulation of proteome and polysaccharide in cell wall of Elsholtzia splendens in response to copper stress. PLoS One 9:e109573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu R, Zhang H, Lal R (2016a) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227:42

    Article  CAS  Google Scholar 

  • Liu S, Jiang W, Wu B, Yu J, Yu H, Zhang X-X, Torres-Duarte C, Cherr GN (2016b) Low levels of graphene and graphene oxide inhibit cellular xenobiotic defense system mediated by efflux transporters. Nanotoxicology 10:597–606

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Wang X, Wang J, Nie Y, Du H, Dai H, Wang J, Wang M, Chen S, Hei TK (2016c) Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy. Environ Sci Technol 50:3154–3164

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Furukawa J (2003) Recent progress in the research of external Al detoxification in higher plants: a minireview. J Inorg Biochem 97:46–51

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Kuang L, He X, Bai W, Ding Y, Zhang Z, Zhao Y, Chai Z (2010) Effects of rare earth oxide nanoparticles on root elongation of plants. Chemosphere 78:273–279

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Yi K, Yang L, Zheng B, Wu Y, Liu F, Wu P (2004) Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. J Exp Bot 55:137–143

    Article  CAS  PubMed  Google Scholar 

  • Maret W (2013) Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 4:82–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez D, Alves O, Barbieri E (2013) Carbon nanotubes enhanced the lead toxicity on the freshwater fish. J Phys Conf Ser. IOP Publishing, 012043

    Google Scholar 

  • Martínez-Fernández D, Barroso D, Komárek M (2016) Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure. Environ Sci Pollut Res 23:1732–1741

    Article  CAS  Google Scholar 

  • Mcgehee DL, Lahiani MH, Irin F, Green MJ, Khodakovskaya MV (2017) Multiwalled carbon nanotubes dramatically affect the fruit metabolome of exposed tomato plants. ACS Appl Mater Interfaces 9:32430–32435

    Article  CAS  PubMed  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot 102:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miralles P, Church TL, Harris AT (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46:9224–9239

    Article  CAS  PubMed  Google Scholar 

  • Mogharabi M, Abdollahi M, Faramarzi MA (2014) Safety concerns to application of graphene compounds in pharmacy and medicine. Bio Med Central 22:23–30

    Google Scholar 

  • Moisala A, Nasibulin AG, Kauppinen EI (2003) The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review. J Phys Condens Matter 15:S3011

    Article  CAS  Google Scholar 

  • Molina-Barahona L, Vega-Loyo L, Guerrero M, Ramirez S, Romero I, Vega-Jarquín C, Albores A (2005) Ecotoxicological evaluation of diesel-contaminated soil before and after a bioremediation process. Environ Toxicol Int J 20:100–109

    Article  CAS  Google Scholar 

  • Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    Article  CAS  PubMed  Google Scholar 

  • Nguyen BD, Brar DS, Bui BC, Nguyen TV, Pham LN, Nguyen HT (2003) Identification and mapping of the QTL for aluminum tolerance introgressed from the new source, Oryza rufipogon Griff., into indica rice (Oryza sativa L.). Theor Appl Genet 106:583–593

    Article  CAS  PubMed  Google Scholar 

  • Niederberger M (2007) Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800

    Article  CAS  PubMed  Google Scholar 

  • Niederberger M, Garnweitner G, Buha J, Polleux J, Ba J, Pinna N (2006) Nonaqueous synthesis of metal oxide nanoparticles: review and indium oxide as case study for the dependence of particle morphology on precursors and solvents. J Sol-Gel Sci Technol 40:259–266

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Nunes SM, Josende ME, Ruas CP, Gelesky MA, Da Silva Júnior FMR, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J (2017) Biochemical responses induced by co-exposition to arsenic and titanium dioxide nanoparticles in the estuarine polychaete Laeonereis acuta. Toxicology 376:51–58

    Article  CAS  PubMed  Google Scholar 

  • Oh MW, Roy SK, Kamal AHM, Cho K, Cho S-W, Park C-S, Choi J-S, Komatsu S, Woo S-H (2014) Proteome analysis of roots of wheat seedlings under aluminum stress. Mol Biol Rep 41:671–681

    Article  CAS  PubMed  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34–42

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Diaz BC, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JL (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135

    Article  CAS  PubMed  Google Scholar 

  • Perreault F, Bogdan N, Morin M, Claverie J, Popovic R (2012) Interaction of gold nanoglycodendrimers with algal cells (Chlamydomonas reinhardtii) and their effect on physiological processes. Nanotoxicology 6:109–120

    Article  CAS  PubMed  Google Scholar 

  • Petersen EJ, Pinto RA, Landrum PF, Weber J, Walter J (2009) Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms. Environ Sci Technol 43:4181–4187

    Article  CAS  PubMed  Google Scholar 

  • Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Yang Q, Liu W (2013) Photocatalytic degradation of phytotoxic substances in waste nutrient solution by various immobilized levels of nano-TiO 2. Water Air Soil Pollut 224:1461

    Article  CAS  Google Scholar 

  • Rangel AF, Rao IM, Horst WJ (2007) Spatial aluminium sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminium resistance. J Exp Bot 58:3895–3904

    Article  CAS  PubMed  Google Scholar 

  • Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18:89–108

    Article  CAS  Google Scholar 

  • Raven JA (1988) The iron and molybdenum use efficiencies of plant growth with different energy, carbon and nitrogen sources. New Phytol 109:279–287

    Article  CAS  Google Scholar 

  • Rizzello L, Pompa PP (2014) Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines. Chem Soc Rev 43:1501–1518

    Article  CAS  PubMed  Google Scholar 

  • Roh J-Y, Sim SJ, Yi J, Park K, Chung KH, Ryu D-Y, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940

    Article  CAS  PubMed  Google Scholar 

  • Romeo S, Trupiano D, Ariani A, Renzone G, Scippa GS, Scaloni A, Sebastiani L (2014) Proteomic analysis of Populus× euramericana (clone I-214) roots to identify key factors involved in zinc stress response. J Plant Physiol 171:1054–1063

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeldt RR, Seitz F, Senn L, Schilde C, Schulz R, Bundschuh M (2015) Nanosized titanium dioxide reduces copper toxicity – the role of organic material and the crystalline phase. Environ Sci Technol 49:1815–1822

    Article  CAS  PubMed  Google Scholar 

  • Saison C, Perreault F, Daigle J-C, Fortin C, Claverie J, Morin M, Popovic R (2010) Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114

    Article  CAS  PubMed  Google Scholar 

  • Santos SM, Dinis AM, Rodrigues DM, Peixoto F, Videira RA, Jurado AS (2013) Studies on the toxicity of an aqueous suspension of C60 nanoparticles using a bacterium (gen. Bacillus) and an aquatic plant (Lemna gibba) as in vitro model systems. Aquat Toxicol 142:347–354

    Article  PubMed  CAS  Google Scholar 

  • Sasidharan A, Panchakarla L, Chandran P, Menon D, Nair S, Rao C, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3:2461–2464

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Tripathi R, Singh R (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Dig J Nanomater Biostruct 5:427–432

    Google Scholar 

  • Schneider T, Persson DP, Husted S, Schellenberg M, Gehrig P, Lee Y, Martinoia E, Schjoerring JK, Meyer S (2013) A proteomics approach to investigate the process of Z n hyperaccumulation in N occaea caerulescens (J & C. P resl) FK M eyer. Plant J 73:131–142

    Article  CAS  PubMed  Google Scholar 

  • Seeger EM, Baun A, Kästner M, Trapp S (2009) Insignificant acute toxicity of TiO 2 nanoparticles to willow trees. J Soils Sediments 9:46–53

    Article  CAS  Google Scholar 

  • Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K, Jabasini M, Tokeshi M, Mizukami H, Bianco A, Baba Y (2010) Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–499

    Article  PubMed  CAS  Google Scholar 

  • Slade S, Pegg G (1993) The effect of silver and other metal ions on the in vitro growth of root-rotting Phytophthora and other fungal species. Ann Appl Biol 122:233–251

    Article  CAS  Google Scholar 

  • Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ (2013) Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res 155:93–103

    Article  CAS  PubMed  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Tan L-Y, Huang B, Xu S, Wei Z-B, Yang L-Y, Miao A-J (2016) Aggregation reverses the carrier effects of TiO2 nanoparticles on cadmium accumulation in the waterflea Daphnia magna. Environ Sci Technol 51:932–939

    Article  PubMed  CAS  Google Scholar 

  • Tian QY, Sun DH, Zhao MG, Zhang WH (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174:322–331

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Pandey R, Singh VP, Sharma NC, Prasad SM, Dubey NK, Chauhan DK (2017) An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant Physiol Biochem 110:2–12

    Article  CAS  PubMed  Google Scholar 

  • Unrine JM, Colman BP, Bone AJ, Gondikas AP, Matson CW (2012) Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution. Environ Sci Technol 46:6915–6924

    Article  CAS  PubMed  Google Scholar 

  • Valle SR, Carrasco J, Pinochet D, Calderini DF (2009) Grain yield, above-ground and root biomass of Al-tolerant and Al-sensitive wheat cultivars under different soil aluminum concentrations at field conditions. Plant Soil 318:299–310

    Article  CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Vishwakarma K, Upadhyay N, Singh J, Liu S, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017) Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8:1501

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Uexkull H, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  CAS  Google Scholar 

  • Wagner PA, Hoekstra WG, Ganther HE (1975) Alleviation of silver toxicity by selenite in the rat in relation to tissue glutathione peroxidase. Proc Soc Exp Biol Med 148:1106–1110

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Kurepa J, Smalle JA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34:811–820

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Shang Y, Yang L, Zhu C (2012) Comparative proteomic study and functional analysis of translationally controlled tumor protein in rice roots under Hg2+ stress. J Environ Sci 24:2149–2158

    Article  CAS  Google Scholar 

  • Wang CY, Shen RF, Wang C, Wang W (2013) Root protein profile changes induced by Al exposure in two rice cultivars differing in Al tolerance. J Proteome 78:281–293

    Article  CAS  Google Scholar 

  • Wang X, Qu R, Allam AA, Ajarem J, Wei Z, Wang Z (2016a) Impact of carbon nanotubes on the toxicity of inorganic arsenic [AS (III) and AS (V)] to Daphnia magna: the role of certain arsenic species. Environ Toxicol Chem 35:1852–1859

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Qu R, Liu J, Wei Z, Wang L, Yang S, Huang Q, Wang Z (2016b) Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna: the role of catalyst impurities and adsorption capacity. Environ Pollut 208:732–738

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016c) Corrigendum: zinc oxide nanoparticles affect biomass accumulation and photosynthesis in arabidopsis. Front Plant Sci 7:559

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Liu Y, Wang J, Nie Y, Chen S, Hei TK, Deng Z, Wu L, Zhao G, Xu A (2017) Amplification of arsenic genotoxicity by TiO2 nanoparticles in mammalian cells: new insights from physicochemical interactions and mitochondria. Nanotoxicology 11:978–995

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye EV, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  CAS  PubMed  Google Scholar 

  • Wood CM, Hogstrand C, Galvez F, Munger R (1996) The physiology of waterborne silver toxicity in freshwater rainbow trout (Oncorhynchus mykiss) 1. The effects of ionic Ag+. Aquat Toxicol 35:93–109

    Article  CAS  Google Scholar 

  • Worms IA, Boltzman J, Garcia M, Slaveykova VI (2012) Cell-wall-dependent effect of carboxyl-CdSe/ZnS quantum dots on lead and copper availability to green microalgae. Environ Pollut 167:27–33

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Huang L, Head J, Chen D, Kong I-C, Tang Y (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:126

    CAS  Google Scholar 

  • Xie W, Wang H, Li H (2011) Silica-supported tin oxides as heterogeneous acid catalysts for transesterification of soybean oil with methanol. Ind Eng Chem Res 51:225–231

    Article  CAS  Google Scholar 

  • Xu C, Garrett WM, Sullivan J, Caperna TJ, Natarajan S (2006) Separation and identification of soybean leaf proteins by two-dimensional gel electrophoresis and mass spectrometry. Phytochemistry 67:2431–2440

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Sibicky T, Huang B (2010) Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance. Plant Cell Rep 29:595–615

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Yang F, Wang Z, Wang Q, Seitz F, Luo Z (2017) Changes in arsenate bioaccumulation, subcellular distribution, depuration, and toxicity in Artemia salina nauplii in the presence of titanium dioxide nanoparticles. Environ Sci Nano 4:1365–1376

    Article  CAS  Google Scholar 

  • Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev 110:5989–6008

    Article  CAS  PubMed  Google Scholar 

  • Yang W-W, Li Y, Miao A-J, Yang L-Y (2012) Cd2+ toxicity as affected by bare TiO2 nanoparticles and their bulk counterpart. Ecotoxicol Environ Saf 85:44–51

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Gu Y, Wang C (2012) Fabrication of the Cu2O/polyvinyl pyrrolidone-graphene modified glassy carbon-rotating disk electrode and its application for sensitive detection of herbicide paraquat. Sensors Actuators B Chem 173:530–539

    Article  CAS  Google Scholar 

  • Yin L, Colman BP, Mcgill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:e47674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zargar SM, Kurata R, Inaba S, Oikawa A, Fukui R, Ogata Y, Agrawal GK, Rakwal R, Fukao Y (2015) Quantitative proteomics of Arabidopsis shoot microsomal proteins reveals a cross-talk between excess zinc and iron deficiency. Proteomics 15:1196–1201

    Article  CAS  PubMed  Google Scholar 

  • Zeng F, Wu X, Qiu B, Wu F, Jiang L, Zhang G (2014) Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress. Planta 240:291–308

    Article  CAS  PubMed  Google Scholar 

  • Zhai G, Walters KS, Peate DW, Alvarez PJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1:146–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Deng R, Lin D, Wu F (2017) Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae. Nanotoxicology 11:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Zhen Y, Qi JL, Wang SS, Su J, Xu GH, Zhang MS, Miao L, Peng XX, Tian D, Yang YH (2007) Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant 131:542–554

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Peyravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peyravi, M., Jahanshahi, M., Eslami, A.B. (2019). Toxicity of Nanomaterials in Plants and Environment. In: Prasad, R. (eds) Plant Nanobionics. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16379-2_13

Download citation

Publish with us

Policies and ethics