Skip to main content

Predictive Modeling of Tox21 Data

  • Chapter
  • First Online:
Advances in Computational Toxicology

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 30))

  • 1058 Accesses

Abstract

As an alternative to traditional animal toxicology studies, the toxicology for the twenty-first century (Tox21 ) program initiated a large-scale, systematic screening of chemicals against target-specific, mechanism-oriented in vitro assays aiming to predict chemical toxicity based on these in vitro assay data. The Tox21 library of ~10,000 environmental chemicals and drugs, representing a wide range of structural diversity, has been tested in triplicate against a battery of cell-based assays in a quantitative high-throughput screening (qHTS ) format generating over 85 million data points that have been made publicly available. This chapter describes efforts to build in vivo toxicity prediction models based on in vitro activity profiles of compounds. Limitations of the current data and strategies to select an optimal set of assays for improved model performance are discussed. To encourage public participation in developing new methods and models for toxicity prediction , a “crowd-sourcing” challenge was organized based on the Tox21 assay data with successful outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADE:

Adverse Drug Effect

ACToR:

Aggregated Computational Toxicology Online Resource

AUC-ROC:

Area Under the Receiver Operating Characteristic curve

ASNN:

Associative Neural Networks

BLA:

Beta-lactamase

CEBS:

Chemical Effects in Biological Systems

CYP:

Cytochrome P450

DMSO:

Dimethylsulfoxide

DTA:

Drug Target Annotation

EPA:

Environmental Protection Agency

FN:

False Negative

FP:

False Positive

FDA:

Food and Drug Administration

GPCR:

G-Protein-Coupled Receptor

HTS:

High-Throughput Screening

NCATS:

National Center for Advancing Translational Sciences

NCCT:

National Center for Computational Toxicology

NIEHS:

National Institute of Environmental Health Sciences

NTP:

National Toxicology Program

NR:

Nuclear Receptor

QC:

Quality Control

qHTS:

Quantitative High-Throughput Screening

QSAR:

Quantitative Structure–Activity Relationship

ROC:

Receiver operating characteristic

SOM:

Self-Organizing Map

SR:

Stress Response

Tox21:

Toxicology for the twenty-first Century

TN:

True Negative

TP:

True Positive

WFS:

Weighted Feature Significance

References

  1. NTP (2014) Current directions and evolving strategies

    Google Scholar 

  2. Collins FS, Gray GM, Bucher JR (2008) Toxicology. Transforming environmental health protection. Science 319(5865):906–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kavlock RJ, Austin CP, Tice RR (2009) Toxicity testing in the 21st century: implications for human health risk assessment. Risk Anal 29(4):485–487 (Discussion 492–487)

    Article  PubMed  Google Scholar 

  4. NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. In: Council NR (ed), The National Academies Press, Washington, DC

    Google Scholar 

  5. Tice RR, Austin CP, Kavlock RJ, Bucher JR (2013) Improving the human hazard characterization of chemicals: a Tox21 update. Environ Health Perspect 121(7):756–765

    Article  PubMed  PubMed Central  Google Scholar 

  6. PubChem (2013) Tox21 phase II compound collection [updated 2013; cited 4 Dec 2013]. Available from http://www.ncbi.nlm.nih.gov/pcsubstance/?term=tox21

  7. NCATS (2016) Tox21 data browser [cited 2016]. Available from https://tripod.nih.gov/tox21/

  8. Attene-Ramos MS, Miller N, Huang R, Michael S, Itkin M, Kavlock RJ, Austin CP, Shinn P, Simeonov A, Tice RR, Xia M (2013) The Tox21 robotic platform for the assessment of environmental chemicals—from vision to reality. Drug Discov Today 18(15–16):716–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hsu CW, Zhao J, Huang R, Hsieh JH, Hamm J, Chang X, Houck K, Xia M (2014) Quantitative high-throughput profiling of environmental chemicals and drugs that modulate farnesoid X receptor. Sci Rep 4:6437. https://doi.org/10.1038/srep06437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang R, Sakamuru S, Martin MT, Reif DM, Judson RS, Houck KA, Casey W, Hsieh JH, Shockley KR, Ceger P, Fostel J, Witt KL, Tong W, Rotroff DM, Zhao T, Shinn P, Simeonov A, Dix DJ, Austin CP, Kavlock RJ, Tice RR, Xia M (2014) Profiling of the Tox21 10K compound library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci Rep 4:5664. https://doi.org/10.1038/srep05664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang R, Xia M, Cho MH, Sakamuru S, Shinn P, Houck KA, Dix DJ, Judson RS, Witt KL, Kavlock RJ, Tice RR, Austin CP (2011) Chemical genomics profiling of environmental chemical modulation of human nuclear receptors. Environ Health Perspect 119(8):1142–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lynch C, Zhao J, Huang R, Kanaya N, Bernal L, Hsieh JH, Auerbach SS, Witt KL, Merrick BA, Chen S, Teng CT, Xia M (2018) Identification of estrogen-related receptor alpha agonists in the Tox21 compound library. Endocrinology 159(2):744–753

    Article  PubMed  Google Scholar 

  13. Lynch C, Sakamuru S, Huang R, Stavreva DA, Varticovski L, Hager GL, Judson RS, Houck KA, Kleinstreuer NC, Casey W, Paules RS, Simeonov A, Xia M (2017) Identifying environmental chemicals as agonists of the androgen receptor by using a quantitative high-throughput screening platform. Toxicology 385:48–58

    Article  CAS  PubMed  Google Scholar 

  14. Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, Simeonov A, Austin CP, Xia M (2015) Profiling of the Tox21 chemical collection for mitochondrial function to identify compounds that acutely decrease mitochondrial membrane potential. Environ Health Perspect 123(1):49–56

    Article  CAS  PubMed  Google Scholar 

  15. Nishihara K, Huang R, Zhao J, Shahane SA, Witt KL, Smith-Roe SL, Tice RR, Takeda S, Xia M (2015) Identification of genotoxic compounds using isogenic DNA repair deficient DT40 cell lines on a quantitative high throughput screening platform. Mutagenesis 31(1):69–81

    PubMed  PubMed Central  Google Scholar 

  16. Witt KL, Hsieh JH, Smith-Roe SL, Xia M, Huang R, Zhao J, Auerbach SS, Hur J, Tice RR (2017) Assessment of the DNA damaging potential of environmental chemicals using a quantitative high-throughput screening approach to measure p53 activation. Environ Mol Mutagen 58(7):494–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang R, Xia M, Sakamuru S, Zhao J, Shahane SA, Attene-Ramos M, Zhao T, Austin CP, Simeonov A (2016) Modelling the Tox21 10K chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat Commun 7:10425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. PubChem (2016) Tox21 phase II data 2016 [cited 16 Nov 2013]. Available from http://www.ncbi.nlm.nih.gov/pcassay?term=tox21

  19. Huang R, Xia M, Sakamuru S, Zhao J, Lynch C, Zhao T, Zhu H, Austin CP, Simeonov A (2018) Expanding biological space coverage enhances the prediction of drug adverse effects in human using in vitro activity profiles. Sci Rep 8(1):3783

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang R, Southall N, Wang Y, Yasgar A, Shinn P, Jadhav A, Nguyen DT, Austin CP (2011) The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med 3(80):80ps16

    Article  PubMed  PubMed Central  Google Scholar 

  21. Huang R (2016) A quantitative high-throughput screening data analysis pipeline for activity profiling. In: Zhu H, Xia M (eds) High-throughput screening assays in toxicology. Methods in molecular biology, vol 1473. Humana Press

    Google Scholar 

  22. Wang Y, Huang R (2016) Correction of microplate data from high throughput screening. In: Zhu H, Xia M (eds) High-throughput screening assays in toxicology. Methods in molecular biology, vol 1473. Humana Press

    Google Scholar 

  23. Kohonen T (2006) Self-organizing neural projections. Neural Networks Official J Int Neural Network Soc 19(6–7):723–733

    Article  Google Scholar 

  24. Huang R, Southall N, Xia M, Cho MH, Jadhav A, Nguyen DT, Inglese J, Tice RR, Austin CP (2009) Weighted feature significance: a simple, interpretable model of compound toxicity based on the statistical enrichment of structural features. Toxicol Sci 112(2):385–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 39(4):561–577

    CAS  PubMed  Google Scholar 

  26. Allen JA, Roth BL (2011) Strategies to discover unexpected targets for drugs active at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 51:117–144

    Article  CAS  PubMed  Google Scholar 

  27. Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am Fam Physician 76(3):391–396

    PubMed  Google Scholar 

  28. Martin MT, Knudsen TB, Reif DM, Houck KA, Judson RS, Kavlock RJ, Dix DJ (2011) Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Biol Reprod 85(2):327–339

    Article  CAS  PubMed  Google Scholar 

  29. Sipes NS, Martin MT, Reif DM, Kleinstreuer NC, Judson RS, Singh AV, Chandler KJ, Dix DJ, Kavlock RJ, Knudsen TB (2011) Predictive models of prenatal developmental toxicity from ToxCast high-throughput screening data. Toxicol Sci 124(1):109–127

    Article  CAS  PubMed  Google Scholar 

  30. Sipes NS, Wambaugh JF, Pearce R, Auerbach SS, Wetmore BA, Hsieh JH, Shapiro AJ, Svoboda D, DeVito MJ, Ferguson SS (2017) An intuitive approach for predicting potential human health risk with the Tox21 10K library. Environ Sci Technol 51(18):10786–10796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Judson RS, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Mortensen HM, Reif DM, Rotroff DM, Shah I, Richard AM, Dix DJ (2010) In vitro screening of environmental chemicals for targeted testing prioritization: the ToxCast project. Environ Health Perspect 118(4):485–492

    Article  CAS  PubMed  Google Scholar 

  32. Sun H, Veith H, Xia M, Austin CP, Tice RR, Huang R (2012) Prediction of cytochrome P450 profiles of environmental chemicals with QSAR models built from drug-like molecules. Mol Inform 31(11–12):783–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Judson R, Richard A, Dix DJ, Houck K, Martin M, Kavlock R, Dellarco V, Henry T, Holderman T, Sayre P, Tan S, Carpenter T, Smith E (2009) The toxicity data landscape for environmental chemicals. Environ Health Perspect 117(5):685–695

    Article  CAS  PubMed  Google Scholar 

  34. Muster W, Breidenbach A, Fischer H, Kirchner S, Muller L, Pahler A (2008) Computational toxicology in drug development. Drug Discov Today 13(7–8):303–310

    Article  CAS  PubMed  Google Scholar 

  35. Vedani A, Smiesko M (2009) In silico toxicology in drug discovery—concepts based on three-dimensional models. Altern Lab Anim 37(5):477–496

    CAS  PubMed  Google Scholar 

  36. Huang R, Xia M, Nguyen D-T, Zhao T, Sakamuru S, Zhao J, Shahane SA, Rossoshek A, Simeonov A (2016) Tox21 challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental chemicals and drugs. Front Environ Sci 3(85):1–9

    Google Scholar 

  37. Huang R, Xia M (2016) Research topic: Tox21 challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental toxicants and drugs. Front Environ Sci 2954

    Google Scholar 

  38. Abdelaziz A, Spahn-Langguth H, Schramm K-W, Tetko IV (2016) Consensus modeling for HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge. Front Environ Sci 4(2):1–12

    Google Scholar 

  39. Barta G (2016) Identifying biological pathway interrupting toxins using multi-tree ensembles. Front Environ Sci 4:52

    Article  Google Scholar 

  40. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  PubMed  Google Scholar 

  41. Mayr A, Klambauer G, Unterthiner T, Hochreiter S (2016) DeepTox: toxicity prediction using deep learning. Front Environ Sci 3(80):1–15

    Google Scholar 

  42. USEPA (2017) ToxCast data. Available from http://www2.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data

  43. FDA (2004) Innovation or stagnation: challenge and opportunity on the critical path to new medical products

    Google Scholar 

  44. Martic-Kehl MI, Schibli R, Schubiger PA (2012) Can animal data predict human outcome? Problems and pitfalls of translational animal research. Eur J Nucl Med Mol Imaging 39(9):1492–1496

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruili Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, R. (2019). Predictive Modeling of Tox21 Data. In: Hong, H. (eds) Advances in Computational Toxicology. Challenges and Advances in Computational Chemistry and Physics, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-16443-0_14

Download citation

Publish with us

Policies and ethics