Skip to main content

Circadian Rhythms and Personalized Melanoma Therapy

  • Chapter
  • First Online:
Personalized Medicine in Healthcare Systems

Part of the book series: Europeanization and Globalization ((EAG,volume 5))

  • 680 Accesses

Abstract

Disruption of the body circadian rhythms has been described in the pathogenesis of many health conditions including cancer. Aberrant circadian rhythms indeed, result in deregulation of circadian clock genes and proteins, which may alter cell proliferation and promote oncogenesis and cancer, including melanoma. Moreover, circadian rhythms are often involved in outcomes of anticancer therapy as well. At the molecular level, the mammalian circadian clock is controlled by transcriptional and posttranslational feedback loops comprising a set of key elements, so-called ‘clock genes’ involved in regulation of a wide range of circadian rhythms in physiological processes and behavior. So far, experimental evidence suggests alteration in circadian clock genes’ expression in human melanoma such as for example PER1, PER2, CLOCK and CRY1. However, no comprehensive data on the specific clock genes’ genetic alterations in melanoma were published so far. The current targeted melanoma therapy is mainly directed towards well-established general targets such as for example mutated BRAF and its signaling or towards immunological targets, namely cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1). Still, chronobiological intervention and its potential in melanoma treatment remain an unexploited area. In particular, optimization of melanoma therapy regimens according to the circadian rhythms or circadian clock function activation in melanoma by a particular therapy might represent a new therapeutic approach for treatment of malignant melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kosary et al. (2014) and Siegel et al. (2016).

  2. 2.

    Desotelle et al. (2012) and Plikus et al. (2015).

  3. 3.

    Dauchy et al. (2014) and Desotelle et al. (2012).

  4. 4.

    Markova-Car et al. (2014).

  5. 5.

    Yu and Reiter (1993), Slominski et al. (2005), Yi et al. (2014) and Kleszczyński et al. (2011).

  6. 6.

    Sahar and Sassone-Corsi (2009) and Li et al. (2013).

  7. 7.

    Albrecht (2012).

  8. 8.

    Bellet and Sassone-Corsi (2010).

  9. 9.

    Zanello et al. (2000).

  10. 10.

    Bjarnason et al. (2001).

  11. 11.

    Sandu et al. (2012).

  12. 12.

    Salavaty (2015).

  13. 13.

    Pukkala et al. (2014), Schernhammer et al. (2011) and Kvaskoff and Weinstein (2010).

  14. 14.

    Pukkala et al. (2012) and Gutierrez and Arbesman (2016).

  15. 15.

    International Commission on Radiological Protection (ICRP) (1997).

  16. 16.

    Schernhammer et al. (2011).

  17. 17.

    Azzi et al. (2014).

  18. 18.

    Aguilar-Arnal and Sassone-Corsi (2013).

  19. 19.

    Fang et al. (2016).

  20. 20.

    Taniguchi et al. (2009), Yang et al. (2006) and Gery et al. (2007).

  21. 21.

    Geyfman et al. (2012).

  22. 22.

    Lengyel et al. (2013a).

  23. 23.

    Lengyel et al. (2013a, b).

  24. 24.

    Hamilton et al. (2015).

  25. 25.

    Hamilton et al. (2015).

  26. 26.

    Sancar et al. (2015).

  27. 27.

    Kang et al. (2010).

  28. 28.

    Gaddameedhi et al. (2011).

  29. 29.

    Padua et al. (1984).

  30. 30.

    Inamdar et al. (2010).

  31. 31.

    Shakhova et al. (2012).

  32. 32.

    Besaratinia and Pfeifer (2008).

  33. 33.

    Bollag et al. (2012).

  34. 34.

    Tsai et al. (2008) and Lee et al. (2010).

  35. 35.

    Melanoma Research Foundation. Melanoma Treatment. Accessed 25.02.2017; American Cancer Society. Treatment of Melanoma Skin Cancer by Stage. Accessed 25.02.2017.

  36. 36.

    Hodis et al. (2012).

  37. 37.

    Krauthammer et al. (2012).

  38. 38.

    Ravnan and Matalka (2012) and Chapman et al. (2011).

  39. 39.

    Johnson et al. (2015).

  40. 40.

    Alexander (2016), Robert et al. (2015a, b) and Hodi et al. (2010).

  41. 41.

    Lévi and Okyar (2011).

  42. 42.

    Ortiz-Tudela et al. (2013).

  43. 43.

    Innominato et al. (2010).

  44. 44.

    Ortiz-Tudela et al. (2013).

  45. 45.

    Leontovich et al. (2012) and Dronca et al. (2012).

  46. 46.

    Individualized Temozolomide in Treating Patients With Stage IV Melanoma That Cannot Be Removed By Surgery.

  47. 47.

    Kiessling et al. (2017).

  48. 48.

    We acknowledge the project “Research Infrastructure for Campus-based Laboratories at University of Rijeka”, co-financed by European Regional Development Fund (ERDF).

References

  • Aguilar-Arnal L, Sassone-Corsi P (2013) The circadian epigenome: how metabolism talks to chromatin remodeling. Curr Opin Cell Biol 25(2):170–176

    Article  Google Scholar 

  • Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74(2):246–260

    Article  Google Scholar 

  • Alexander W (2016) The checkpoint immunotherapy revolution: what started as a trickle has become a flood, despite some daunting adverse effects; new drugs, indications, and combinations continue to emerge. P T 41(3):185–191

    Google Scholar 

  • American Cancer Society. Treatment of Melanoma Skin Cancer by Stage. https://www.cancer.org/cancer/melanoma-skin-cancer/treating/by-stage.html. Accessed 25 Feb 2017

  • Azzi A, Dallmann R, Casserly A et al (2014) Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat Neurosci 17(3):377–382

    Article  Google Scholar 

  • Bellet MM, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism – the epigenetic link. J Cell Sci 123(Pt 22):3837–3848

    Article  Google Scholar 

  • Besaratinia A, Pfeifer GP (2008) Sunlight ultraviolet irradiation and BRAF V600 mutagenesis in human melanoma. Hum Mutat 29(8):983–991

    Article  Google Scholar 

  • Bjarnason GA, Jordan RC, Wood PA et al (2001) Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 158(5):1793–1801

    Article  Google Scholar 

  • Bollag GE, Tsai J, Zhang J et al (2012) Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov 11(11):873–886

    Article  Google Scholar 

  • Chapman PB, Hauschild A, Robert C et al (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364(26):2507–2516

    Article  Google Scholar 

  • Dauchy RT, Xiang S, Mao L et al (2014) Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res 74(15):4099–4110

    Article  Google Scholar 

  • Desotelle JA, Wilking MJ, Ahmad N (2012) The circadian control of skin and cutaneous photodamage. Photochem Photobiol 88(5):1037–1047

    Article  Google Scholar 

  • Dronca RS, Leontovich AA, Nevala WK et al (2012) Personalized therapy for metastatic melanoma: could timing be everything? Future Oncol 8(11):1401–1406

    Article  Google Scholar 

  • Fang M, Hutchinson L, Deng A et al (2016) Common BRAF (V600E)-directed pathway mediates widespread epigenetic silencing in colorectal cancer and melanoma. Proc Natl Acad Sci U S A 113(5):1250–1255

    Article  Google Scholar 

  • Gaddameedhi S, Selby CP, Kaufmann WK et al (2011) Control of skin cancer by the circadian rhythm. Proc Natl Acad Sci U S A 108(64):18790–18795

    Article  Google Scholar 

  • Gery S, Komatsu N, Kawamata N et al (2007) Epigenetic silencing of the candidate tumor suppressor gene Per1 in non-small cell lung cancer. Clin Cancer Res 13(5):1399–1404

    Article  Google Scholar 

  • Geyfman M, Kumar V, Liu Q et al (2012) Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc Natl Acad Sci U S A 109(29):11758–11763

    Article  Google Scholar 

  • Gutierrez D, Arbesman J (2016) Circadian dysrhythmias, physiological aberrations, and the link to skin cancer. Int J Mol Sci 17(5):621

    Article  Google Scholar 

  • Hamilton N, Diaz-de-Cerio N, Whitmore D (2015) Impaired light detection of the circadian clock in a zebrafish melanoma model. Cell Cycle 14(8):1232–1241

    Article  Google Scholar 

  • Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  Google Scholar 

  • Hodis E, Watson IR, Kryukov GV et al (2012) A landscape of driver mutations in melanoma. Cell 150(2):251–263

    Article  Google Scholar 

  • Individualized Temozolomide in Treating Patients With Stage IV Melanoma That Cannot Be Removed By Surgery. https://clinicaltrials.gov/ct2/show/NCT01328535?term=melanoma+and+temozolomide+and+mayo&rank=1

  • Inamdar GS, Madhunapantula SV, Robertson GP (2010) Targeting the MAPK pathway in melanoma: why some approaches succeed and other fail. Biochem Pharmacol 80(5):624–637

    Article  Google Scholar 

  • Innominato PF, Lévi FA, Bjarnason GA (2010) Chronotherapy and the molecular clock: clinical implications in oncology. Adv Drug Deliv Rev 62(9–10):979–1001

    Article  Google Scholar 

  • International Commission on Radiological Protection (ICRP) (1997) General principles for the radiation protection of workers. Ann ICRP 27(1):1–60

    Article  Google Scholar 

  • Johnson DB, Peng C, Sosman JA (2015) Nivolumab in melanoma: latest evidence and clinical potential. Ther Adv Med Oncol 7(2):97–106

    Article  Google Scholar 

  • Kang T-H, Lindsey-Boltz LA, Reardon JT et al (2010) Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. Proc Natl Acad Sci U S A 107(11):4890–4895

    Article  Google Scholar 

  • Kiessling S, Beaulieu-Laroche L, Blum ID et al (2017) Enhancing circadian clock function in cancer cells inhibits tumor growth. BMC Biol 15(1):13

    Article  Google Scholar 

  • Kleszczyński K, Hardkop LH, Fischer TW (2011) Differential effects of melatonin as a broad range UV-damage preventive dermato-endocrine regulator. Dermatoendocrinol 3(1):27–31

    Article  Google Scholar 

  • Kosary CL, Altekruse SF, Ruhl J et al (2014) Clinical and prognostic factors for melanoma of the skin using SEER registries: collaborative stage data collection system, version 1 and version 2. Cancer 120(Suppl 23):3807–3814

    Article  Google Scholar 

  • Krauthammer M, Kong Y, Ha BH et al (2012) Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 44(9):1006–1014

    Article  Google Scholar 

  • Kvaskoff M, Weinstein P (2010) Are some melanomas caused by artificial light? Med Hypotheses 75(3):305–311

    Article  Google Scholar 

  • Lee JT, Li L, Brafford PA et al (2010) PLX4032, a potent inhibitor of the B-Raf V600E oncogene, selectively inhibits V600E-positive melanomas. Pigment Cell Melanoma Res 23(6):820–827

    Article  Google Scholar 

  • Lengyel Z, Lovig C, Kommedal S et al (2013a) Altered expression patterns of clock gene mRNAs and clock proteins in human skin tumors. Tumor Biol 34(2):811–819

    Article  Google Scholar 

  • Lengyel Z, Battyáni Z, Szekeres G et al (2013b) Circadian clocks and tumor biology: what is to learn from human skin biopsies? Gen Comp Endocrinol 188:67–74

    Article  Google Scholar 

  • Leontovich AA, Dronca RS, Suman VJ et al (2012) Fluctuation of systemic immunity in melanoma and implications for timing of therapy. Front Biosci (Elite Ed) 4:958–975

    Article  Google Scholar 

  • Lévi F, Okyar A (2011) Circadian clocks and drug delivery systems: impact and opportunities in chronotherapeutics. Expert Opin Drug Deliv 8(12):1535–1541

    Article  Google Scholar 

  • Li S, Ao X, Wu H (2013) The role of circadian rhythm in breast cancer. Chin J Cancer Res 25(4):442–450

    Google Scholar 

  • Markova-Car EP, Jurišić D, Ilić N et al (2014) Running for time: circadian rhythms and melanoma. Tumour Biol 35(9):8359–8368

    Article  Google Scholar 

  • Melanoma Research Foundation. Melanoma Treatment. https://www.melanoma.org/understand-melanoma/melanoma-treatment. Accessed 25 Feb 2017

  • Ortiz-Tudela E, Mteyrek A, Ballesta A et al (2013) Cancer chronotherapeutics: experimental, theoretical, and clinical aspects. Handb Exp Pharmacol 2017:261–288

    Article  Google Scholar 

  • Padua RA, Barrass N, Currie GA (1984) A novel transforming gene in a human malignant melanoma cell line. Nature 311(5987):671–673

    Article  Google Scholar 

  • Plikus MV, Van Spyk EN, Pham K et al (2015) The circadian clock in skin: implications for adult stem cells, tissue regeneration, cancer, aging, and immunity. J Biol Rhythms 30(3):163–182

    Article  Google Scholar 

  • Pukkala E, Helminen M, Haldorsen T et al (2012) Cancer incidence among Nordic airline cabin crew. Int J Cancer 131(12):2886–2897

    Article  Google Scholar 

  • Pukkala E, Martinsen JI, Weiderpass E et al (2014) Cancer incidence among firefighters: 45 years of follow-up in five Nordic countries. Occup Environ Med 71(6):398–404

    Article  Google Scholar 

  • Ravnan MC, Matalka MS (2012) Vemurafenib in patients with BRAF V600E mutation-positive advanced melanoma. Clin Ther 34(7):1474–1486

    Article  Google Scholar 

  • Robert C, Schachter J, Long GV et al (2015a) Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med 372(26):2521–2532

    Article  Google Scholar 

  • Robert C, Long GV, Brady B et al (2015b) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330

    Article  Google Scholar 

  • Sahar S, Sassone-Corsi P (2009) Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 9(12):886–896

    Article  Google Scholar 

  • Salavaty A (2015) Carcinogenic effects of circadian disruption: an epigenetic viewpoint. Chin J Cancer 34(9):375–383

    Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Gaddameedhi S et al (2015) Circadian clock, cancer, and chemotherapy. Biochemistry 54(2):110–123

    Article  Google Scholar 

  • Sandu C, Dumas M, Malan A et al (2012) Human skin keratinocytes, melanocytes, and fibroblasts contain distinct circadian clock machineries. Cell Mol Life Sci 69(19):3329–3339

    Article  Google Scholar 

  • Schernhammer ES, Razavi P, Li TY et al (2011) Rotating night shifts and risk of skin cancer in the nurses’ health study. J Natl Cancer Inst 103(7):602–606

    Article  Google Scholar 

  • Shakhova O, Zingg D, Schaefer SM et al (2012) Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol 14(8):882–890

    Article  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30

    Article  Google Scholar 

  • Slominski A, Fischer TW, Zmijewski MA et al (2005) On the role of melatonin in skin physiology and pathology. Endocrine 27(2):137–148

    Article  Google Scholar 

  • Taniguchi H, Fernández AF, Setién F et al (2009) Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res 69(21):8447–8454

    Article  Google Scholar 

  • Tsai J, Lee JT, Wang W et al (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci U S A 105(8):3041–3046

    Article  Google Scholar 

  • Yang MY, Chang JG, Lin PM et al (2006) Downregulation of circadian clock genes in chronic myeloid leukemia: alternative methylation pattern of hPER3. Cancer Sci 97(12):1298–1307

    Article  Google Scholar 

  • Yi C, Zhang Y, Yu Z et al (2014) Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways. PLoS One 9(7):e99943

    Article  Google Scholar 

  • Yu HS, Reiter RJ (eds) (1993) Melatonin biosynthesis, physiological effects, and clinical applications. CRC Press, Boca Raton

    Google Scholar 

  • Zanello SB, Jackson DM, Holick MF (2000) Expression of the circadian clock genes clock and period1 in human skin. J Invest Dermatol 115(4):757–760

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elitza P. Markova-Car .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Markova-Car, E.P., Jurišić, D., Ružak, N., Kraljević Pavelić, S. (2019). Circadian Rhythms and Personalized Melanoma Therapy. In: Bodiroga-Vukobrat, N., Rukavina, D., Pavelić, K., Sander, G.G. (eds) Personalized Medicine in Healthcare Systems. Europeanization and Globalization, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-030-16465-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16465-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16464-5

  • Online ISBN: 978-3-030-16465-2

  • eBook Packages: Law and CriminologyLaw and Criminology (R0)

Publish with us

Policies and ethics