Skip to main content

Application of Micro-CT in Soft Tissue Specimen Imaging

  • Chapter
  • First Online:
Micro-computed Tomography (micro-CT) in Medicine and Engineering

Abstract

The application of micro-CT in soft tissue specimens as a noninvasive imaging tool has been studied for accurate visualization of three-dimensional structures; generally useful methods for micro-CT imaging for comparative, functional studies of morphology are still in process. Overall visualization of soft tissue has proven to be possible, along with versatile staining methods, tissue fixation, and sample preparation. This chapter focuses mainly on biological applications analyzed by micro-CT with possibilities of combining with other preparations and imaging methods in different soft tissues (organs, animals, food, or tissue engineering). Such technological advancements are expected to develop micro-CT into genomic, functional, developmental, and even molecular evolutionary imaging modality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mizutani R, Suzuki Y. X-ray microtomography in biology. Micron. 2012;43(2–3):104–15.

    PubMed  Google Scholar 

  2. Bannerman A, Paxton JZ, Grover LM. Imaging the hard/soft tissue interface. Biotechnol Lett. 2014;36(3):403–15.

    CAS  PubMed  Google Scholar 

  3. Weon B, Je J, Hwu Y, Margaritondo G. Phase contrast x-ray imaging. Int J Nanotechnol. 2006;3:280–97.

    CAS  Google Scholar 

  4. Shearer T, Bradley RS, Hidalgo-Bastida LA, Sherratt MJ, Cartmell SH. Three-dimensional visualisation of soft biological structures by X-ray computed micro-tomography. J Cell Sci. 2016;129(13):2483–92.

    CAS  PubMed  Google Scholar 

  5. Descamps E, Sochacka A, de Kegel B, Van Loo D, Hoorebeke L, Adriaens D. Soft tissue discrimination with contrast agents using micro-ct scanning. Belgian J Zool. 2014;144(1):20–40.

    Google Scholar 

  6. de S. e Silva JM, Zanette I, Noël PB, Cardoso MB, Kimm MA, Pfeiffer F. Three-dimensional non-destructive soft-tissue visualization with X-ray staining micro-tomography. Sci Rep. 2015;5:14088.

    Google Scholar 

  7. Hrvoje L, Greenstaff MW. X-ray computed tomography contrast agents. Chem Rev. 2014;113:1641–66. https://doi.org/10.1021/cr200358s.X-Ray.

    Article  Google Scholar 

  8. Clark DP, Badea CT. Micro-CT of rodents: state-of-the-art and future perspectives. Phys Med. 2014;30(6):619–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Metscher BD. Micro CT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9(1) https://doi.org/10.1186/1472-6793-9-11.

  10. Metscher BD. Mi for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Dev Dyn. 2009;238:632–40. https://doi.org/10.1002/dvdy.21857.

  11. Wathen CA, Foje N, van Avermaete T, Miramontes B, Chapaman SE, Sasser TA, et al. In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast. Sensors (Basel). 2013;13:6957–80. https://doi.org/10.3390/s130606957.

    Article  CAS  PubMed Central  Google Scholar 

  12. Faraj KA, Cuijpers VMJI, Wismans RG, Walboomers XF, Jansen JA, van Kuppevelt TH, et al. Micro-computed tomographical imaging of soft biological materials using contrast techniques. Tissue Eng Part C Methods. 2009;15:493–9. https://doi.org/10.1089/ten.tec.2008.0436.

    Article  CAS  PubMed  Google Scholar 

  13. Kim J, Chhour P, Hsu J, Litt HI, Ferrari VA, Popovtzer R, et al. Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjug Chem. 2017;28:1581–97. https://doi.org/10.1021/acs.bioconjchem.7b00194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. von zur Muhlen C, von Elverfeldt D, Bassler N, Neudorfer I, Steitz B, Petri-Fink A, et al. Superparamagnetic iron oxide binding and uptake as imaged by magnetic resonance is mediated by the integrin receptor Mac-1 (CD11b/CD18): Implications on imaging of atherosclerotic plaques. Atherosclerosis. 2007;193:102–11. https://doi.org/10.1016/j.atherosclerosis.2006.08.048.

    Article  CAS  Google Scholar 

  15. Cox PG, Faulkes CG. Digital dissection of the masticatory muscles of the naked mole-rat, Heterocephalus glaber (Mammalia, Rodentia). PeerJ. 2014;2:e448.

    PubMed  PubMed Central  Google Scholar 

  16. Degenhardt K, Wright AC, Horng D, Padmanabhan A, Epstein JA. Rapid 3D phenotyping of cardiovascular development in mouse embryos by micro-CT with iodine staining. Circ Cardiovasc Imaging. 2010;3:314–22. https://doi.org/10.1161/CIRCIMAGING.109.918482.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gignac PM, Kley NJ, Clarke JA, Colbert MW, Morhardt AC, Cerio D, et al. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues. J Anat. 2016;228:889–909. https://doi.org/10.1111/joa.12449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nieminen HJ, Ylitalo T, Karhula S, Suuronen J-P, Kauppinen S, Serimaa R, et al. Determining collagen distribution in articular cartilage using contrast-enhanced micro-computed tomography. Osteoarthr Cartil. 2015;23:1613–21. https://doi.org/10.1016/j.joca.2015.05.004.

    Article  CAS  Google Scholar 

  19. Zhao F, Zhou Z, Yan Y, Yuan Z, Yang G, Yu H, et al. Effect of fixation on neovascularization during bone healing. Med Eng Phys. 2014;36(11):1436–42.

    PubMed  Google Scholar 

  20. Blery P, Pilet P, Vanden-Bossche A, Thery A, Guicheux J, Amouriq Y, et al. Vascular imaging with contrast agent in hard and soft tissues using microcomputed-tomography. J Microsc. 2016;262(1):40–9.

    CAS  PubMed  Google Scholar 

  21. Kerckhofs G, Stegen S, van Gastel N, Sap A, Falgayrac G, Penel G, et al. Simultaneous three-dimensional visualization of mineralized and soft skeletal tissues by a novel microCT contrast agent with polyoxometalate structure. Biomaterials. 2018;159:1–12.

    CAS  PubMed  Google Scholar 

  22. Delecourt C, Relier M, Touraine S, Bouhadoun H, Engelke K, Laredo JD, et al. Cartilage morphology assessed by high resolution micro-computed tomography in non OA knees. Osteoarthr Cartil. 2016;24(3):567–71.

    CAS  Google Scholar 

  23. Kün-Darbois JD, Manero F, Rony L, Chappard D. Contrast enhancement with uranyl acetate allows quantitative analysis of the articular cartilage by microCT: Application to mandibular condyles in the BTX rat model of disuse. Micron. 2017;97:35–40.

    PubMed  Google Scholar 

  24. Lalwani K, Giddabasappa A, Li D, Olson P, Simmons B, Shojaei F, et al. Contrast agents for quantitative MicroCT of lung tumors in mice. Comp Med. 2013;63(6):482–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Paoli F, Wirkner CS, Cannicci S. The branchiostegal lung of Uca vocans (Decapoda: Ocypodidae): Unreported complexity revealed by corrosion casting and MicroCT techniques. Arthropod Struct Dev. 2015;44(6):622–9.

    PubMed  Google Scholar 

  26. Schachner ER, Sedlmayr JC, Schott R, Lyson TR, Sanders RK, Lambertz M. Pulmonary anatomy and a case of unilateral aplasia in a common snapping turtle (Chelydra serpentina): developmental perspectives on cryptodiran lungs. J Anat. 2017;231(6):835–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Scott AE, Vasilescu DM, Seal KAD, Keyes SD, Mavrogordato MN, Hogg JC, et al. Three dimensional imaging of paraffin embedded human lung tissue samples by micro-computed tomography. PLoS One. 2015;10(6):e0126230.

    PubMed  PubMed Central  Google Scholar 

  28. Counter WB, Wang IQ, Farncombe TH, Labiris NR. Airway and pulmonary vascular measurements using contrast-enhanced micro-CT in rodents. AJP Lung Cell Mol Physiol. 2013;304(12):L831–43.

    CAS  Google Scholar 

  29. Faight EM, Verdelis K, Zourelias L, Chong R, Benza RL, Shields KJ. MicroCT analysis of vascular morphometry: a comparison of right lung lobes in the SUGEN/hypoxic rat model of pulmonary arterial hypertension. Pulm Circ. 2017;7(2):522–30.

    PubMed  PubMed Central  Google Scholar 

  30. Phillips MR, Moore SM, Shah M, Lee C, Lee YZ, Faber JE, et al. A method for evaluating the murine pulmonary vasculature using micro-computed tomography. J Surg Res. 2017;207:115–22.

    PubMed  Google Scholar 

  31. Kampschulte M, Schneider CR, Litzlbauer HD, Tscholl D, Schneider C, Zeiner C, et al. Quantitative 3D micro-CT imaging of human lung tissue quantitative 3-D-mikro-CT-Bildgebung von humanem Lungengewebe. Fortschr Röntgenstr. 2013;185(9):869–76.

    CAS  Google Scholar 

  32. Bell RD, Rudmann C, Wood RW, Schwarz EM, Rahimi H. Longitudinal micro-CT as an outcome measure of interstitial lung disease in TNF-transgenic mice. PLoS One. 2018;13(1):1–13.

    Google Scholar 

  33. Tanabe N, Vasilescu DM, Kirby M, Coxson HO, Verleden SE, Vanaudenaerde BM, et al. Analysis of airway pathology in COPD using a combination of computed tomography, micro-computed tomography and histology. Eur Respir J. 2018;51(2):1701245.

    PubMed  PubMed Central  Google Scholar 

  34. Tanabe N, Vasilescu DM, McDonough JE, Kinose D, Suzuki M, Cooper JD, et al. Micro-computed tomography comparison of preterminal bronchioles in centrilobular and panlobular emphysema. Am J Respir Crit Care Med. 2017;195(5):630–8.

    PubMed  PubMed Central  Google Scholar 

  35. Zhou Y, Chen H, Ambalavanan N, Liu G, Antony VB, Ding Q, et al. Noninvasive imaging of experimental lung fibrosis. Am J Respir Cell Mol Biol. 2015;53(1):8–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee J-G, Shim S, Kim M-J, Myung JK, Jang W-S, Bae C-H, et al. Pentoxifylline regulates plasminogen activator inhibitor-1 expression and protein kinase a phosphorylation in radiation-induced lung fibrosis. Biomed Res Int. 2017;2017:1–10.

    CAS  Google Scholar 

  37. Ackermann M, Kim YO, Wagner WL, Schuppan D, Valenzuela CD, Mentzer SJ, et al. Effects of nintedanib on the microvascular architecture in a lung fibrosis model. Angiogenesis. 2017;20(3):359–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Marien E, Hillen A, Vanderhoydonc F, Swinnen JV, Vande Velde G. Longitudinal microcomputed tomography-derived biomarkers for lung metastasis detection in a syngeneic mouse model: added value to bioluminescence imaging. Lab Investig. 2017;97(1):24–33.

    CAS  PubMed  Google Scholar 

  39. Vande Velde G, Poelmans J, De Langhe E, Hillen A, Vanoirbeek J, Himmelreich U, et al. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume. Dis Model Mech. 2016;9(1):91–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gu L, Deng ZJ, Roy S, Hammond PT. A combination RNAi-chemotherapy layer-by-layer nanoparticle for systemic targeting of KRAS/P53 with cisplatin to treat non-small cell lung cancer. Clin Cancer Res. 2017;23(23):7312–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lartey FM, Rafat M, Negahdar M, Malkovskiy AV, Dong X, Sun X, et al. Dynamic CT imaging of volumetric changes in pulmonary nodules correlates with physical measurements of stiffness. Radiother Oncol. 2017;122(2):313–8.

    PubMed  Google Scholar 

  42. Hegab A, Kameyama N, Kuroda A, Kagawa S, Yin Y, Ornitz D, et al. Using micro-computed tomography for the assessment of tumor development and follow-up of response to treatment in a mouse model of lung cancer. J Vis Exp. 2016;111:1–8.

    Google Scholar 

  43. Vasilescu DM, Phillion AB, Tanabe N, Kinose D, Paige DF, Kantrowitz JJ, et al. Nondestructive cryomicro-CT imaging enables structural and molecular analysis of human lung tissue. J Appl Physiol. 2017;122(1):161–9.

    PubMed  Google Scholar 

  44. Befera NT, Badea CT, Johnson GA. Comparison of 4D-microSPECT and microCT for murine cardiac function. Mol Imaging Biol. 2014;16(2):235–45.

    PubMed  PubMed Central  Google Scholar 

  45. Ashton JR, Befera N, Clark D, Qi Y, Mao L, Rockman HA, et al. Anatomical and functional imaging of myocardial infarction in mice using micro-CT and eXIA 160 contrast agent. Contrast Media Mol Imaging. 2014;9(2):161–8.

    CAS  PubMed  Google Scholar 

  46. Disney CM, Lee PD, Hoyland JA, Sherratt MJ, Bay BK. A review of techniques for visualising soft tissue microstructure deformation and quantifying strain Ex Vivo. J Microsc. 2018;272(3):165–79.

    CAS  PubMed  Google Scholar 

  47. Dullin C, Ufartes R, Larsson E, Martin S, Lazzarini M, Tromba G, et al. μCT of ex-vivo stained mouse hearts and embryos enables a precise match between 3D virtual histology, classical histology and immunochemistry. PLoS One. 2017;12(2):1–15.

    Google Scholar 

  48. Domínguez E, Ruberte J, Ríos J, Novellas R, del Alamo MMR, Navarro M, et al. Non-invasive in vivo measurement of cardiac output in C57BL/6 mice using high frequency transthoracic ultrasound: evaluation of gender and body weight effects. Int J Card Imaging. 2014;30(7):1237–44.

    Google Scholar 

  49. Maier J, Sawall S, Kachelrieß M. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure. Med Phys. 2014;41(5):051908.

    PubMed  Google Scholar 

  50. Lee C-L, Min H, Befera N, Clark D, Qi Y, Das S, et al. Assessing cardiac injury in mice with dual energy-microCT, 4D-microCT and microSPECT imaging following partial-heart irradiation. Int J Radiat Oncol Biol Phys. 2014;88(3):686–93.

    PubMed  PubMed Central  Google Scholar 

  51. Merchant SS, Kosaka Y, Yost HJ, Hsu EW, Brunelli L. Micro-computed tomography for the quantitative 3-dimensional assessment of the compact myocardium in the mouse embryo. Circ J. 2016;80(8):1795–803.

    PubMed  Google Scholar 

  52. Grover SP, Saha P, Jenkins J, Mukkavilli A, Lyons OT, Patel AS, et al. Quantification of experimental venous thrombus resolution by longitudinal nanogold-enhanced micro-computed tomography. Thromb Res. 2015;136(6):1285–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Peter AK, Bradford WH, Dalton ND, Gu Y, Chao CJ, Peterson KL, et al. Increased echogenicity and radiodense foci on echocardiogram and microCT in murine myocarditis. PLoS One. 2016;11(8):1–13.

    Google Scholar 

  54. Zhao J, Hansen BJ, Csepe TA, Lim P, Wang Y, Williams M, et al. Integration of high-resolution optical mapping and 3-dimensional micro-computed tomographic imaging to resolve the structural basis of atrial conduction in the human heart. Circ Arrhythm Electrophysiol. 2015;8(6):1514–7.

    PubMed  PubMed Central  Google Scholar 

  55. Pierce EL, Bloodworth CH, Naran A, Easley TF, Jensen MO, Yoganathan AP. Novel method to track soft tissue deformation by micro-computed tomography: application to the mitral valve. Ann Biomed Eng. 2016;44(7):2273–81.

    PubMed  Google Scholar 

  56. Barannyk O, Fraser R, Oshkai P. A correlation between long-term in vitro dynamic calcification and abnormal flow patterns past bioprosthetic heart valves. J Biol Phys. 2017;43(2):279–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Roche ET, Horvath MA, Wamala I, Song SE, Whyte W, Machaidze Z, et al. Soft robotic sleeve restores heart function. Sci Transl Med. 2017;9(373):eaaf3925.

    PubMed  Google Scholar 

  58. Müter D, Sørensen HO, Oddershede J, Dalby KN, Stipp SLS. Microstructure and micromechanics of the heart urchin test from X-ray tomography. Acta Biomater. 2015;23:21–6.

    PubMed  Google Scholar 

  59. Babaei F, Hong TLC, Yeung K, Cheng SH, Lam YW. Contrast-enhanced x-ray micro-computed tomography as a versatile method for anatomical studies of adult zebrafish. Zebrafish. 2016;13(4):310–6.

    CAS  PubMed  Google Scholar 

  60. Anderson R, Maga AM. A novel procedure for rapid imaging of adult mouse brains with MicroCT using iodine-based contrast. PLoS One. 2015;10(11):1–7.

    Google Scholar 

  61. De Crespigny A, Bou-reslan H, Nishimura MC, Phillips H, Richard A, Carano D, et al. 3D microCT of the postmortem brain. J Neurosci Methods. 2009;171(2):207–13.

    Google Scholar 

  62. Ghanavati S, Lerch JP, Sled JG. Automatic anatomical labeling of the complete cerebral vasculature in mouse models. NeuroImage. 2014;95:117–28.

    PubMed  Google Scholar 

  63. Mizutani R, Saiga R, Ohtsuka M, Miura H, Hoshino M, Takeuchi A, et al. Three-dimensional x-ray visualization of axonal tracts in mouse brain hemisphere. Sci Rep. 2016;6:1–11.

    Google Scholar 

  64. Saito S, Murase K. Ex vivo imaging of mouse brain using micro-CT with non-ionic iodinated contrast agent: a comparison with myelin staining. Br J Radiol. 2012;85(1019):973–8.

    Google Scholar 

  65. Mancini M, Greco A, Tedeschi E, Palma G, Ragucci M, Bruzzone MG, et al. Head and neck veins of the mouse. A magnetic resonance, micro computed tomography and high frequency color doppler ultrasound study. PLoS One. 2015;10(6):1–15.

    CAS  Google Scholar 

  66. Starosolski Z, Villamizar CA, Rendon D, Paldino MJ, Milewicz DM, Ghaghada KB, et al. Ultra high-resolution in vivo computed tomography imaging of mouse cerebrovasculature using a long circulating blood pool contrast agent. Sci Rep. 2015;5:1–11.

    Google Scholar 

  67. Girard R, Zeineddine HA, Orsbon C, Tan H, Moore T, Hobson N, et al. Micro-computed tomography in murine models of cerebral cavernous malformations as a paradigm for brain disease. J Neurosci Methods. 2016;271:14–24.

    PubMed  PubMed Central  Google Scholar 

  68. Neulen A, Pantel T, Kosterhon M, Kirschner S, Brockmann MA, Kantelhardt SR, et al. A segmentation-based volumetric approach to localize and quantify cerebral vasospasm based on tomographic imaging data. PLoS One. 2017;12(2):1–14.

    Google Scholar 

  69. Choi JP, Yang X, Foley M, Wang X, Zheng X. Induction and micro-CT imaging of cerebral cavernous malformations in mouse model. J Vis Exp. 2017;127:1–5.

    CAS  Google Scholar 

  70. Kim J-Y, Ryu JH, Schellingerhout D, Sun I-C, Lee S-K, Jeon S, et al. Direct imaging of cerebral thromboemboli using computed tomography and fibrin-targeted gold nanoparticles. Theranostics. 2015;5(10):1098–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Vesey AT, WSA J, Irkle A, Moss A, Sng G, Forsythe RO, et al. 18F-fluoride and 18 F-fluorodeoxyglucose positron emission tomography after transient ischemic attack or minor ischemic stroke clinical perspective. Circ Cardiovasc Imaging. 2017;10(3):e004976.

    PubMed  PubMed Central  Google Scholar 

  72. Dobrivojević M, Bohaček I, Erjavec I, Gorup D, Gajović S. Computed microtomography visualization and quantification of mouse ischemic brain lesion by nonionic radio contrast agents. Croat Med J. 2013;54:3–11.

    PubMed  PubMed Central  Google Scholar 

  73. Hayasaka N, Nagai N, Kawao N, Niwa A, Yoshioka Y, Mori Y, et al. In vivo diagnostic imaging using micro-CT: Sequential and comparative evaluation of rodent models for hepatic/brain ischemia and stroke. PLoS One. 2012;7(2):e32342.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Park JY, Lee SK, Kim JY, Je KH, Schellingerhout D, Kim DE. A new micro-computed tomography-based high-resolution blood-brain barrier imaging technique to study ischemic stroke. Stroke. 2014;45(8):2480–4.

    CAS  PubMed  Google Scholar 

  75. Lamy M, Baumgartner D, Yoganandan N, Stemper BD, Willinger R. Experimentally validated three-dimensional finite element model of the rat for mild traumatic brain injury. Med Biol Eng Comput. 2013;51(3):353–65.

    PubMed  Google Scholar 

  76. Moazen M, Alazmani A, Rafferty K, Liu ZJ, Gustafson J, Cunningham ML, et al. Intracranial pressure changes during mouse development. J Biomech. 2016;49(1):123–6.

    PubMed  Google Scholar 

  77. Marghoub A, Libby J, Babbs C, Pauws E, Fagan MJ, Moazen M. Predicting calvarial growth in normal and craniosynostotic mice using a computational approach. J Anat. 2018;232(3):440–8.

    CAS  PubMed  Google Scholar 

  78. Goldie SJ, Arhatari BD, Anderson P, Auden A, Partridge DD, Jane SM, et al. Mice lacking the conserved transcription factor Grainyhead-like 3 (Grhl3) display increased apposition of the frontal and parietal bones during embryonic development. BMC Dev Biol. 2016;16(1):1–12.

    Google Scholar 

  79. Sombke A, Lipke E, Michalik P, Uhl G, Harzsch S. Potential and limitations of x-ray micro-computed tomography in arthropod neuroanatomy: a methodological and comparative survey. J Comp Neurol. 2015;523(8):1281–95.

    PubMed  PubMed Central  Google Scholar 

  80. Pierce SE, Williams M, Benson RBJ. Virtual reconstruction of the endocranial anatomy of the early Jurassic marine crocodylomorph Pelagosaurus typus (Thalattosuchia). PeerJ. 2017;5:e3225.

    PubMed  PubMed Central  Google Scholar 

  81. Steinhoff POM, Sombke A, Liedtke J, Schneider JM, Harzsch S, Uhl G. The synganglion of the jumping spider Marpissa muscosa (Arachnida: Salticidae): Insights from histology, immunohistochemistry and microCT analysis. Arthropod Struct Dev. 2017;46(2):156–70.

    PubMed  Google Scholar 

  82. Boyer DM, Kirk EC, Silcox MT, Gunnell GF, Gilbert CC, Yapuncich GS, et al. Internal carotid arterial canal size and scaling in Euarchonta: re-assessing implications for arterial patency and phylogenetic relationships in early fossil primates. J Hum Evol. 2016;97:123–44.

    PubMed  Google Scholar 

  83. Kirk EC, Daghighi P, Macrini TE, Bhullar BAS, Rowe TB. Cranial anatomy of the duchesnean primate Rooneyia viejaensis: new insights from high resolution computed tomography. J Hum Evol. 2014;74:82–95.

    PubMed  Google Scholar 

  84. Orliac MJ, Ladeveze S, Gingerich PD, Lebrun R, Smith T. Endocranial morphology of palaeocene plesiadapis tricuspidens and evolution of the early primate brain. Proc R Soc B Biol Sci. 2014;281(1781):20132792.

    Google Scholar 

  85. Nasrullah Q, Renfree MB, Evans AR. Three-dimensional mammalian tooth development using diceCT. Arch Oral Biol. 2018;85(March 2017):183–91.

    PubMed  Google Scholar 

  86. Bertrand OC, Amador-Mughal F, Silcox MT. Virtual endocast of the early oligocene cedromus wilsoni (Cedromurinae) and brain evolution in squirrels. J Anat. 2017;230(1):128–51.

    PubMed  Google Scholar 

  87. Brusatte SL, Muir A, Young MT, Walsh S, Steel L, Witmer LM. The braincase and neurosensory anatomy of an early jurassic marine crocodylomorph: implications for crocodylian sinus evolution and sensory transitions. Anat Rec. 2016;299(11):1511–30.

    Google Scholar 

  88. Smith DB, Bernhardt G, Raine NE, Abel RL, Sykes D, Ahmed F, et al. Exploring miniature insect brains using micro-CT scanning techniques. Sci Rep. 2016;6(1):21768.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Porter WR, Witmer LM. Vascular patterns in iguanas and other squamates: blood vessels and sites of thermal exchange. Sugihara I, editor. PLoS One. 2015;10(10):e0139215.

    PubMed  PubMed Central  Google Scholar 

  90. Gignac PM, Kley NJ. Iodine-enhanced micro-CT imaging: Methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates. J Exp Zool Part B Mol Dev Evol. 2014;322(3):166–76.

    Google Scholar 

  91. Schambach SJ, Bag S, Schilling L, Groden C, Brockmann MA. Application of micro-CT in small animal imaging. Methods. 2010;50(1):2–13.

    CAS  PubMed  Google Scholar 

  92. Missbach-Guentner J, Pinkert-Leetsch D, Dullin C, Ufartes R, Hornung D, Tampe B, et al. 3D virtual histology of murine kidneys -high resolution visualization of pathological alterations by micro computed tomography. Sci Rep. 2018;8(1):1–14.

    CAS  Google Scholar 

  93. Almajdub M, Magnier L, Juillard L, Janier M. Kidney volume quantification using contrast-enhanced in vivo X-ray micro-CT in mice. Contrast Media Mol Imaging. 2008;3(3):120–6.

    CAS  PubMed  Google Scholar 

  94. Iwanaga J, Saga T, Tabira Y, Watanabe K, Yamaki K. Contrast imaging study of the horseshoe kidney for transplantation. Surg Radiol Anat. 2015;37(10):1267–71.

    PubMed  Google Scholar 

  95. Hutchinson JC, Barrett H, Ramsey AT, Haig IG, Guy A, Sebire NJ, et al. Virtual pathological examination of the human fetal kidney using micro-CT. Ultrasound Obstet Gynecol. 2016;48(5):663–5.

    CAS  PubMed  Google Scholar 

  96. Urbieta-Caceres VH, Syed FA, Lin J, Zhu X-Y, Jordan KL, Bell CC, et al. Age-dependent renal cortical microvascular loss in female mice. Am J Physiol Metab. 2012;302(8):E979–86.

    CAS  Google Scholar 

  97. Perrien DS, Saleh MA, Takahashi K, Madhur MS, Harrison DG, Harris RC, et al. Novel methods for microCT-based analyses of vasculature in the renal cortex reveal a loss of perfusable arterioles and glomeruli in eNOS−/− mice. BMC Nephrol. 2016;17(1):1–10.

    Google Scholar 

  98. Ehling J, Babikova J, Gremse F, Klinkhammer BM, Baetke S, Knuechel R, et al. Quantitative micro-computed tomography imaging of vascular dysfunction in progressive kidney diseases. J Am Soc Nephrol. 2016;27(2):520–32.

    CAS  PubMed  Google Scholar 

  99. Remuzzi A, Sangalli F, Macconi D, Tomasoni S, Cattaneo I, Rizzo P, et al. Regression of renal disease by angiotensin II antagonism is caused by regeneration of kidney vasculature. J Am Soc Nephrol. 2016;27(3):699–705.

    CAS  PubMed  Google Scholar 

  100. Letavernier E, Verrier C, Goussard F, Perez J, Huguet L, Haymann JP, et al. Calcium and vitamin D have a synergistic role in a rat model of kidney stone disease. Kidney Int. 2016;90(4):809–17.

    CAS  PubMed  Google Scholar 

  101. Scherer K, Braig E, Willer K, Willner M, Fingerle AA, Chabior M, et al. Non-invasive differentiation of kidney stone types using x-ray dark-field radiography. Sci Rep. 2015;5:1–7.

    Google Scholar 

  102. Kline TL, Knudsen BE, Anderson JL, Vercnocke AJ, Jorgensen SM, Ritman EL. Anatomy of hepatic arteriolo-portal venular shunts evaluated by 3D micro-CT imaging. J Anat. 2014;224(6):724–31.

    PubMed  PubMed Central  Google Scholar 

  103. Debbaut C, Segers P, Cornillie P, Casteleyn C, Dierick M, Laleman W, et al. Analyzing the human liver vascular architecture by combining vascular corrosion casting and micro-CT scanning: a feasibility study. J Anat. 2014;224(4):509–17.

    PubMed  PubMed Central  Google Scholar 

  104. Peeters G, Debbaut C, Laleman W, Monbaliu D, Vander Elst I, Detrez JR, et al. A multilevel framework to reconstruct anatomical 3D models of the hepatic vasculature in rat livers. J Anat. 2017;230(3):471–83.

    CAS  PubMed  Google Scholar 

  105. Kline TL, Zamir M, Ritman EL. Relating function to branching geometry: A micro-CT study of the hepatic artery, portal vein, and biliary tree. Cells Tissues Organs. 2011;194(5):431–42.

    PubMed  PubMed Central  Google Scholar 

  106. Martiniova L, Schimel D, Lai EW, Limpuangthip A, Kvetnansky R, Pacak K. In vivo micro-CT imaging of liver lesions in small animal models. Methods. 2010;50(1):20–5.

    CAS  PubMed  Google Scholar 

  107. Stroope A, Radtke B, Huang B, Masyuk T, Torres V, Ritman E, et al. Hepato-renal pathology in Pkd2ws25/−mice, an animal model of autosomal dominant polycystic kidney disease. Am J Pathol. 2010;176(3):1282–91.

    PubMed  PubMed Central  Google Scholar 

  108. Peeters G, Debbaut C, Cornillie P, De Schryver T, Monbaliu D, Laleman W, et al. A multilevel modeling framework to study hepatic perfusion characteristics in case of liver cirrhosis. J Biomech Eng. 2015;137(5):051007.

    PubMed  Google Scholar 

  109. Tabibian JH, Macura SI, O’Hara SP, Fidler JL, Glockner JF, Takahashi N, et al. Micro-computed tomography and nuclear magnetic resonance imaging for noninvasive, live-mouse cholangiography. Lab Investig. 2013;93(6):733–43.

    CAS  PubMed  Google Scholar 

  110. Thompson JG, van der Sterren W, Bakhutashvili I, van der Bom IM, Radaelli AG, Karanian JW, et al. Distribution and detection of radiopaque beads after hepatic transarterial embolization in swine: cone-beam CT versus MicroCT. J Vasc Interv Radiol. 2018;29(4):568–74.

    PubMed  PubMed Central  Google Scholar 

  111. Will OM, Damm T, Campbell GM, von Schönfells W, Açil Y, Will M, et al. Longitudinal micro-computed tomography monitoring of progressive liver regeneration in a mouse model of partial hepatectomy. Lab Anim. 2017;51(4):422–6.

    CAS  PubMed  Google Scholar 

  112. Al Rawashdeh W, Zuo S, Melle A, Appold L, Koletnik S, Tsvetkova Y, et al. Noninvasive assessment of elimination and retention using CT-FMT and kinetic whole-body modeling. Theranostics. 2017;7(6):1499–510.

    PubMed  PubMed Central  Google Scholar 

  113. Barnes SL, Lyshchik A, Washington MK, Gore JC, Miga MI. Development of a mechanical testing assay for fibrotic murine liver. Med Phys. 2007;34(11):4439–50.

    PubMed  Google Scholar 

  114. Lublinsky S, Luu YK, Rubin CT, Judex S. Automated separation of visceral and subcutaneous adiposity in in vivo microcomputed tomographies of mice. J Digit Imaging. 2009;22(3):222–31.

    PubMed  Google Scholar 

  115. Hua XW, Lu TF, Li DW, Wang WG, Li J, Liu ZZ, et al. Contrast-enhanced micro-computed tomography using ExiTron nano6000 for assessment of liver injury. World J Gastroenterol. 2015;21(26):8043–51.

    PubMed  PubMed Central  Google Scholar 

  116. Boll H, Nittka S, Doyon F, Neumaier M, Marx A, Kramer M, et al. Micro-CT based experimental liver imaging using a nanoparticulate contrast agent: a longitudinal study in mice. PLoS One. 2011;6(9):1–6.

    Google Scholar 

  117. Stout DB, Suckow CE. MicroCT liver contrast agent enhancement over time, dose, and mouse strain. Mol Imaging Biol. 2008;10(2):114–20.

    PubMed  Google Scholar 

  118. Henning T, Weber AW, Bauer JS, Meier R, Carlsen JM, Sutton EJ, et al. Imaging characteristics of DHOG, a hepatobiliary contrast agent for preclinical microCT in mice. Acad Radiol. 2008;15(3):342–9.

    PubMed  Google Scholar 

  119. Brinkmann M, Rizzo LY, Lammers T, Gremse F, Schiwy S, Kiessling F, et al. Micro-computed tomography (μCT) as a novel method in ecotoxicology—determination of morphometric and somatic data in rainbow trout (Oncorhynchus mykiss). Sci Total Environ. 2016;543:135–9.

    CAS  PubMed  Google Scholar 

  120. Aoyagi H, ichi IS, Yoshizawa H, Tsuchikawa K. Three-dimensional observation of the mouse embryo by micro-computed tomography: Meckel’s cartilage, otocyst, and/or muscle of tongue. Odontology. 2012;100(2):137–43.

    PubMed  Google Scholar 

  121. Jeffery NS, Stephenson RS, Gallagher JA, Jarvis JC, Cox PG. Micro-computed tomography with iodine staining resolves the arrangement of muscle fibres. J Biomech. 2011;44(1):189–92.

    PubMed  Google Scholar 

  122. Kupczik K, Stark H, Mundry R, Neininger FT, Heidlauf T, Röhrle O. Reconstruction of muscle fascicle architecture from iodine-enhanced microCT images: a combined texture mapping and streamline approach. J Theor Biol. 2015;382:34–43.

    PubMed  Google Scholar 

  123. Yan L, Guo Y, Qi J, Zhu Q, Gu L, Zheng C, et al. Iodine and freeze-drying enhanced high-resolution MicroCT imaging for reconstructing 3D intraneural topography of human peripheral nerve fascicles. J Neurosci Methods. 2017;287:58–67.

    CAS  PubMed  Google Scholar 

  124. Bikis C, Degrugillier L, Thalmann P, Schulz G, Müller B, Hieber SE, et al. Three-dimensional imaging and analysis of entire peripheral nerves after repair and reconstruction. J Neurosci Methods. 2018;295:37–44.

    PubMed  Google Scholar 

  125. Charles JP, Cappellari O, Spence AJ, Wells DJ, Hutchinson JR. Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model. J Anat. 2016;229(4):514–35.

    PubMed  PubMed Central  Google Scholar 

  126. Vickerton P, Jarvis JC, Gallagher JA, Akhtar R, Sutherland H, Jeffery N. Morphological and histological adaptation of muscle and bone to loading induced by repetitive activation of muscle. Proc R Soc B Biol Sci. 2014;281(1788):1–9.

    Google Scholar 

  127. Libouban H, Guintard C, Minier N, Aguado E, Chappard D. Long-term quantitative evaluation of muscle and bone wasting induced by botulinum toxin in mice using microcomputed tomography. Calcif Tissue Int. 2018;102(6):695–704.

    CAS  PubMed  Google Scholar 

  128. Wu J, Yin N. Detailed Anatomy of the Nasolabial Muscle in Human Fetuses as Determined by Micro-CT Combined with Iodine Staining. Ann Plast Surg. 2016;76(1):111–6.

    CAS  PubMed  Google Scholar 

  129. Wu J, Yin N. Anatomy research of nasolabial muscle structure in fetus with cleft lip: An iodine staining technique based on microcomputed tomography. J Craniofac Surg. 2014;25(3):1056–61.

    PubMed  Google Scholar 

  130. Yin N, Wu J, Chen B, Song T, Ma H, Zhao Z, et al. Muscle tension line concept in nasolabial muscle complex—based on 3-dimensional reconstruction of nasolabial muscle fibers. J Craniofac Surg. 2015;26(2):469–72.

    PubMed  Google Scholar 

  131. Goethals LR, de Geeter F, Vanhove C, Roosens B, Devos H, Lahoutte T. Improved quantification in pinhole gated myocardial perfusion SPECT using micro-CT and ultrasound information. Contrast Media Mol Imaging. 2012;7(2):167–74.

    CAS  PubMed  Google Scholar 

  132. Hendriks J, Riesle J, van Blitterswijk CA. Co-culture in cartilage tissue engineering. J Tissue Eng Regen Med. 2010;4(7):524–31.

    Google Scholar 

  133. Toma M, Jensen MØ, Einstein DR, Yoganathan AP, Cochran RP, Kunzelman KS. Fluid–structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure. Ann Biomed Eng. 2016;44(4):942–53.

    PubMed  Google Scholar 

  134. Detombe SA, Xiang F-L, Dunmore-Buyze J, White JA, Feng Q, Drangova M. Rapid microcomputed tomography suggests cardiac enlargement occurs during conductance catheter measurements in mice. J Appl Physiol. 2012;113(1):142–8.

    PubMed  Google Scholar 

  135. Garcia FH, Fischer G, Liu C, Audisio TL, Economo EP. Next-generation morphological character discovery and evaluation: An X-ray micro-CT enhanced revision of the ant genus zasphinctus wheeler (hymenoptera, formicidae, dorylinae) in the afrotropics. Zookeys. 2017;2017(693):33–93.

    Google Scholar 

  136. Li D, Zhang K, Zhu P, Wu Z, Zhou H. 3D configuration of mandibles and controlling muscles in rove beetles based on micro-CT technique. Anal Bioanal Chem. 2011;401(3):817–25.

    CAS  PubMed  Google Scholar 

  137. Holliday CM, Tsai HP, Skiljan RJ, George ID, Pathan S. A 3D interactive model and atlas of the jaw musculature of alligator mississippiensis. PLoS One. 2013;8(6):e62806.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Praet T, Adriaens D, Van Cauter S, Masschaele B, De Beule M, Verhegghe B. Inspiration from nature: dynamic modelling of the musculoskeletal structure of the seahorse tail. Int J Numer Method Biomed Eng. 2012;28(10):1028–42.

    PubMed  Google Scholar 

  139. Dickinson E, Stark H, Kupczik K. Non-destructive determination of muscle architectural variables through the use of DiceCT. Anat Rec. 2018;301(2):363–77.

    CAS  Google Scholar 

  140. Cox PG, Jeffery N. Reviewing the morphology of the jaw-closing musculature in squirrels, rats, and guinea pigs with contrast-enhanced microCt. Anat Rec Adv Integr Anat Evol Biol. 2011;294(6):915–28.

    Google Scholar 

  141. Marxen M, Thornton MM, Chiarot CB, Klement G, Koprivnikar J, Sled JG, et al. MicroCT scanner performance and considerations for vascular specimen imaging. Med Phys. 2004;31(2):305–13.

    PubMed  Google Scholar 

  142. Das NM, Hatsell S, Nannuru K, Huang L, Wen X, Wang L, et al. In vivo quantitative microcomputed tomographic analysis of vasculature and organs in a normal and diseased mouse model. PLoS One. 2016;11(2):1–18.

    CAS  Google Scholar 

  143. Vasquez SX, Gao F, Su F, Grijalva V, Pope J, Martin B, et al. Optimization of microCT imaging and blood vessel diameter quantitation of preclinical specimen vasculature with radiopaque polymer injection medium. PLoS One. 2011;6(4):2–7.

    Google Scholar 

  144. Prajapati SI, Keller C. Contrast enhanced vessel imaging using microCT. J Vis Exp. 2011;47:4–6.

    Google Scholar 

  145. Aoki T, Rodriguez-Porcel M, Matsuo Y, Cassar A, Kwon T-G, Franchi F, et al. Evaluation of coronary adventitial vasa vasorum using 3D optical coherence tomography—animal and human studies. Atherosclerosis. 2015;239(1):203–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Nierenberger M, Rémond Y, Ahzi S, Choquet P. Assessing the three-dimensional collagen network in soft tissues using contrast agents and high resolution micro-CT: application to porcine iliac veins. Comptes Rendus - Biol. 2015;338(7):425–33.

    Google Scholar 

  147. Rahman A, Cahill LS, Zhou YQ, Hoggarth J, Rennie MY, Seed M, et al. A mouse model of antepartum stillbirth. Am J Obstet Gynecol. 2017;217(4):443.e1–443.e11.

    Google Scholar 

  148. Kizhakke Puliyakote AS, Vasilescu DM, Sen-Sharma K, Wang G, Hoffman EA. A skeleton-tree based approach to acinar morphometric analysis using micro computed tomography with comparison of acini in young and old C57Bl/6 mice. J Appl Physiol. 2016;120(12):1402–9.

    PubMed  PubMed Central  Google Scholar 

  149. Shields KJ, Verdelis K, Passineau MJ, Faight EM, Zourelias L, Wu C, et al. Three-dimensional micro computed tomography analysis of the lung vasculature and differential adipose proteomics in the Sugen/hypoxia rat model of pulmonary arterial hypertension. Pulm Circ. 2016;6(4):586–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Pai VM, Kozlowski M, Donahue D, Miller E, Xiao X, Chen MY, et al. Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT). J Anat. 2012;220(5):514–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu J, Zhong S, Lan H, Meng X, Zhang H, Fan Y, et al. Mapping the calcification of bovine pericardium in rat model by enhanced micro-computed tomography. Biomaterials. 2014;35(29):8305–11.

    CAS  PubMed  Google Scholar 

  152. Huesa C, Millán JL, Van’t Hof RJ, MacRae VE. A new method for the quantification of aortic calcification by three-dimensional micro-computed tomography. Int J Mol Med. 2013;32(5):1047–50.

    CAS  PubMed  Google Scholar 

  153. Schleicher N, Tomkins AJ, Kampschulte M, Hyvelin JM, Botteron C, Juenemann M, et al. Sonothrombolysis with BR38 microbubbles improves microvascular patency in a rat model of stroke. PLoS One. 2016;11(4):1–12.

    Google Scholar 

  154. Jiřík M, Tonar Z, Králíčková A, Eberlová L, Mírka H, Kochová P, et al. Stereological quantification of microvessels using semiautomated evaluation of X-ray microtomography of hepatic vascular corrosion casts. Int J Comput Assist Radiol Surg. 2016;11(10):1803–19.

    PubMed  Google Scholar 

  155. Maïga S, Allain G, Hauet T, Roumy J, Baulier E, Scepi M, et al. Renal auto-transplantation promotes cortical microvascular network remodeling in a preclinical porcine model. PLoS One. 2017;12(7):1–16.

    Google Scholar 

  156. Persy V, Postnov A, Neven E, Dams G, De Broe M, D’Haese P, et al. High-resolution X-ray microtomography is a sensitive method to detect vascular calcification in living rats with chronic renal failure. Arterioscler Thromb Vasc Biol. 2006;26(9):2110–6.

    CAS  PubMed  Google Scholar 

  157. Postnov AA, D’Haese PC, Neven E, De Clerck NM, Persy VP. Possibilities and limits of X-ray microtomography for in vivo and ex vivo detection of vascular calcifications. Int J Card Imaging. 2009;25(6):615–24.

    CAS  Google Scholar 

  158. Ramot Y, Brauner R, Kang K, Heymach JV, Furtado S, Nyska A. Quantitative evaluation of drug-induced microvascular constriction in mice kidney using a novel tool for 3D geometrical analysis of ex vivo organ vasculature. Toxicol Pathol. 2014;42(4):774–83.

    PubMed  Google Scholar 

  159. Dinley J, Hawkins L, Paterson G, Ball AD, Sinclair I, Sinnett-Jones P, et al. Micro-computed X-ray tomography: A new non-destructive method of assessing sectional, fly-through and 3D imaging of a soft-bodied marine worm. J Microsc. 2010;238(2):123–33.

    CAS  PubMed  Google Scholar 

  160. Weber SM, Peterson KA, Durkee B, Qi C, Longino M, Warner T, et al. Imaging of murine liver tumor using microCT with a hepatocyte-selective contrast agent: accuracy is dependent on adequate contrast enhancement. J Surg Res. 2004;119(1):41–5.

    CAS  PubMed  Google Scholar 

  161. Almajdub M, Nejjari M, Poncet G, Magnier L, Chereul E, Roche C, et al. In-vivo high-resolution X-ray microtomography for liver and spleen tumor assessment in mice. Contrast Media Mol Imaging. 2007 Mar;2(2):88–93.

    CAS  PubMed  Google Scholar 

  162. Bour G, Martel F, Goffin L, Bayle B, Gangloff J, Aprahamian M, et al. Design and development of a robotized system coupled to mCT imaging for intratumoral drug evaluation in a HCC mouse model. PLoS One. 2014;9(9):e106675.

    PubMed  PubMed Central  Google Scholar 

  163. Takakura K, Koido S, Fujii M, Hashiguchi T, Shibazaki Y, Yoneyama H, et al. Characterization of non-alcoholic steatohepatitis-derived hepatocellular carcinoma as a human stratification model in mice. Anticancer Res. 2014;34(9):4849–55.

    PubMed  Google Scholar 

  164. Ohta S, Lai EW, Morris JC, Bakan DA, Klaunberg B, Cleary S, et al. MicroCT for high-resolution imaging of ectopic pheochromocytoma tumors in the liver of nude mice. Int J Cancer. 2006;119(9):2236–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Chang CH, Jan ML, Fan KH, Wang HE, Tsai TH, Chen CF, et al. Longitudinal evaluation of tumor metastasis by an FDG-microPET/microCT dual-imaging modality in a lung carcinoma-bearing mouse model. Anticancer Res. 2006;26(1A):159–66.

    PubMed  Google Scholar 

  166. Savai R, Langheinrich AC, Schermuly RT, Pullamsetti SS, Dumitrascu R, Traupe H, et al. Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia. 2009;11(1):48–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Apps JR, Hutchinson JC, Arthurs OJ, Virasami A, Joshi A, Zeller-Plumhoff B, et al. Imaging Invasion: Micro-CT imaging of adamantinomatous craniopharyngioma highlights cell type specific spatial relationships of tissue invasion. Acta Neuropathol Commun. 2016;4(1):57.

    PubMed  PubMed Central  Google Scholar 

  168. Kirschner S, Felix MC, Hartmann L, Bierbaum M, Maros ME, Kerl HU, et al. In vivo micro-CT imaging of untreated and irradiated orthotopic glioblastoma xenografts in mice: capabilities, limitations and a comparison with bioluminescence imaging. J Neuro-Oncol. 2015;122(2):245–54.

    CAS  Google Scholar 

  169. Yahyanejad S, Granton PV, Lieuwes NG, Gilmour L, Dubois L, Theys J, et al. Complementary use of bioluminescence imaging and contrast-enhanced micro—computed tomography in an orthotopic brain tumor model. Mol Imaging. 2014;13(4) https://doi.org/10.2310/7290.2014.00038.

  170. Prajapati SI, Kilcoyne A, Samano AK, Green DP, McCarthy SD, Blackman BA, et al. MicroCT-based virtual histology evaluation of preclinical medulloblastoma. Mol Imaging Biol. 2011;13(3):493–9.

    PubMed  PubMed Central  Google Scholar 

  171. Tang R, Saksena M, Coopey SB, Fernandez L, Buckley JM, Lei L, et al. Intraoperative micro-computed tomography (micro-CT): a novel method for determination of primary tumour dimensions in breast cancer specimens. Br J Radiol. 2016;89(1058):20150581.

    PubMed  Google Scholar 

  172. Baklaushev VP, Grinenko NF, Yusubalieva GM, Abakumov MA, Gubskii IL, Cherepanov SA, et al. Modeling and integral x-ray, optical, and mri visualization of multiorgan metastases of orthotopic 4T1 breast carcinoma in BALB/c mice. Bull Exp Biol Med. 2015;158(4):581–8.

    CAS  PubMed  Google Scholar 

  173. Felix MC, Fleckenstein J, Kirschner S, Hartmann L, Wenz F, Brockmann MA, et al. Image-guided radiotherapy using a modified industrial micro-CT for preclinical applications. PLoS One. 2015;10(5):1–11.

    Google Scholar 

  174. Kersemans V, Thompson J, Cornelissen B, Woodcock M, Allen PD, Buls N, et al. Micro-CT for anatomic referencing in PET and SPECT: radiation dose, biologic damage, and image quality. J Nucl Med. 2011;52(11):1827–33.

    PubMed  Google Scholar 

  175. Pauwels E, Van Loo D, Cornillie P, Brabant L, Van Hoorebeke L. An exploratory study of contrast agents for soft tissue visualization by means of high resolution X-ray computed tomography imaging. J Microsc. 2013;250(1):21–31.

    CAS  PubMed  Google Scholar 

  176. Kirschner S, Mürle B, Felix M, Arns A, Groden C, Wenz F, et al. Imaging of orthotopic glioblastoma xenografts in mice using a clinical CT scanner: comparison with micro-CT and histology. PLoS One. 2016;11(11):1–13.

    Google Scholar 

  177. Hopkins TM, Heilman AM, Liggett JA, LaSance K, Little KJ, Hom DB, et al. Combining micro-computed tomography with histology to analyze biomedical implants for peripheral nerve repair. J Neurosci Methods. 2015 Nov;255:122–30.

    PubMed  PubMed Central  Google Scholar 

  178. Bikis C, Thalmann P, Degrugillier L, Schulz G, Müller B, Kalbermatten DF, et al. Three-dimensional and non-destructive characterization of nerves inside conduits using laboratory-based micro computed tomography. J Neurosci Methods. 2018;294:59–66.

    PubMed  Google Scholar 

  179. Albers J, Markus MA, Alves F, Dullin C. X-ray based virtual histology allows guided sectioning of heavy ion stained murine lungs for histological analysis. Sci Rep. 2018;8(1):1–10.

    Google Scholar 

  180. Arendse E, Fawole OA, Magwaza LS, Opara UL. Non-destructive prediction of internal and external quality attributes of fruit with thick rind: a review. J Food Eng. 2018;217:11–23.

    Google Scholar 

  181. Schoeman L, Williams P, du Plessis A, Manley M. X-ray micro-computed tomography (μCT) for non-destructive characterisation of food microstructure. Trends Food Sci Technol. 2016;47:10–24.

    CAS  Google Scholar 

  182. Frisullo P, Laverse J, Marino R, Del Nobile MA. X-ray computed tomography to study processed meat microstructure. J Food Eng. 2009;94(3–4):283–9.

    Google Scholar 

  183. Frisullo P, Marino R, Laverse J, Albenzio M, Del Nobile MA. Assessment of intramuscular fat level and distribution in beef muscles using X-ray microcomputed tomography. Meat Sci. 2010;85(2):250–5.

    CAS  PubMed  Google Scholar 

  184. Zhu LJ, Dogan H, Gajula H, Gu MH, Liu QQ, Shi YC. Study of kernel structure of high-amylose and wild-type rice by X-ray microtomography and SEM. J Cereal Sci. 2012;55(1):1–5.

    CAS  Google Scholar 

  185. Guelpa A, du Plessis A, Manley M. A high-throughput X-ray micro-computed tomography (μCT) approach for measuring single kernel maize (Zea mays L.) volumes and densities. J Cereal Sci. 2016;69:321–8.

    Google Scholar 

  186. Mohorič A, Vergeldt F, Gerkema E, van Dalen G, van den Doel LR, van Vliet LJ, et al. The effect of rice kernel microstructure on cooking behaviour: a combined μ-CT and MRI study. Food Chem. 2009;115(4):1491–9.

    Google Scholar 

  187. Schoeman L, Du Plessis A, Manley M. Non-destructive characterisation and quantification of the effect of conventional oven and forced convection continuous tumble (FCCT) roasting on the three-dimensional microstructure of whole wheat kernels using X-ray micro-computed tomography (μCT). J Food Eng. 2016;187:1–13.

    Google Scholar 

  188. Cafarelli B, Spada A, Laverse J, Lampignano V, Del Nobile MA. X-ray microtomography and statistical analysis: tools to quantitatively classify bread microstructure. J Food Eng. 2014;124:64–71.

    Google Scholar 

  189. Magwaza LS, Opara UL. Investigating non-destructive quantification and characterization of pomegranate fruit internal structure using X-ray computed tomography. Postharvest Biol Technol. 2014;95:1–6.

    CAS  Google Scholar 

  190. Herremans E, Verboven P, Defraeye T, Rogge S, Ho QT, Hertog MLATM, et al. X-ray CT for quantitative food microstructure engineering: the apple case. Nucl Instruments Methods Phys Res Sect B. 2014;324:88–94.

    CAS  Google Scholar 

  191. Diels E, van Dael M, Keresztes J, Vanmaercke S, Verboven P, Nicolai B, et al. Assessment of bruise volumes in apples using X-ray computed tomography. Postharvest Biol Technol. 2017;128:24–32.

    Google Scholar 

  192. Muziri T, Theron KI, Cantre D, Wang Z, Verboven P, Nicolai BM, et al. Microstructure analysis and detection of mealiness in ‘Forelle’ pear (Pyrus communis L.) by means of X-ray computed tomography. Postharvest Biol Technol. 2016;120:145–56.

    Google Scholar 

  193. Cantre D, Herremans E, Verboven P, Ampofo-Asiama J, Nicolaï B. Characterization of the 3-D microstructure of mango (Mangifera indica L. cv. Carabao) during ripening using X-ray computed microtomography. Innov Food Sci Emerg Technol. 2014;24:28–39.

    Google Scholar 

  194. Cantre D, East A, Verboven P, Trejo Araya X, Herremans E, Nicolaï BM, et al. Microstructural characterisation of commercial kiwifruit cultivars using X-ray micro computed tomography. Postharvest Biol Technol. 2014;92:79–86.

    CAS  Google Scholar 

  195. Frisullo P, Barnabà M, Navarini L, Del Nobile MA. Coffea arabica beans microstructural changes induced by roasting: An X-ray microtomographic investigation. J Food Eng. 2012;108(1):232–7.

    Google Scholar 

  196. Oliveros NO, Hernández JA, Sierra-Espinosa FZ, Guardián-Tapia R, Pliego-Solórzano R. Experimental study of dynamic porosity and its effects on simulation of the coffee beans roasting. J Food Eng. 2017;199:100–12.

    Google Scholar 

  197. Warning A, Verboven P, Nicolaï B, Van Dalen G, Datta AK. Computation of mass transport properties of apple and rice from X-ray microtomography images. Innov Food Sci Emerg Technol. 2014;24:14–27.

    Google Scholar 

  198. Suki B. Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung. J Cell Physiol. 2014;229(9):1134–40.

    CAS  PubMed  Google Scholar 

  199. Zarghami N, Jensen MD, Talluri S, Foster PJ, Chambers AF, Dick FA, et al. Technical note: immunohistochemical evaluation of mouse brain irradiation targeting accuracy with 3D-printed immobilization device. Med Phys. 2015;42(11):6507–13.

    CAS  PubMed  Google Scholar 

  200. De Paolis A, Watanabe H, Nelson JT, Bikson M, Packer M, Cardoso L. Human cochlear hydrodynamics: a high-resolution μCT-based finite element study. J Biomech. 2017 Jan;50(32):209–16.

    PubMed  Google Scholar 

  201. Buytaert JAN, Salih WHM, Dierick M, Jacobs P, Dirckx JJJ. Realistic 3D computer model of the gerbil middle ear, featuring accurate morphology of bone and soft tissue structures. J Assoc Res Otolaryngol. 2011;12(6):681–96.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Author is greatly indebted to Loma Linda University School of Dentistry, Center for Dental Research, Micro Imaging Research Facility for facilitating the use of the micro-CT instrument and to Luis E. Salazar for his help with the skillful assistance in the English revision and to Danieli Moura PhD, Brasil for the summary of the different contrast agents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gina Delia Roque-Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roque-Torres, G.D. (2020). Application of Micro-CT in Soft Tissue Specimen Imaging. In: Orhan, K. (eds) Micro-computed Tomography (micro-CT) in Medicine and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-16641-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16641-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16640-3

  • Online ISBN: 978-3-030-16641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics