Skip to main content

The Main Problems

  • Chapter
  • First Online:
The Quantum Mechanics Conundrum
  • 1023 Accesses

Abstract

QM could be considered a cluster of riddles and the world that it describes as a kind of impenetrable sphinx. As a matter of fact, the best minds of several generations have tried to cope with these mysteries, and consistent advancements have been made step by step although to date no congruent general interpretation that would capture the agreement of the physicists’ community has been provided. Here, I schematically summarise some of the main problems partitioning the whole in four broad subjects: significance of the quantum formalism, measurement, non–locality and causality. The possible solutions to these problems will be treated in the next chapters.

Randomness is where reason stops, it’s a statement that things are accidental, meaningless, unpredictable, and happen for no reason.

Gregory J. Chaitin, The Unknowable

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ludwig (1978, pp. 8–9). Physical reality also presents a fundamental domain (Grundbereich) that is relatively independent of the application prescriptions as well as of the mathematics.

  2. 2.

    This has been clearly the standpoint of the young Heisenberg: see Heisenberg (1927).

  3. 3.

    It may be discussed in which sense causal aspects need to be involved here (Margenau 1950, Sect. 8.1).

  4. 4.

    Deutsch (1997, 2011).  The same point is supported in Wallace (2012, Sect. 1.1).  For the notion of scientific models as maps see Auletta (2011a, Sect. 2.1.5) and literature quoted there.

  5. 5.

    This has been pointed out already in Auletta (2000, Sect. 6.2).   See also ‘T Hooft (2016, p. 34).

  6. 6.

    I summarise here the arguments presented, e.g. in Auletta and Wang (2014, Sects. 3.5–3.7 and 7.8).

  7. 7.

    For the original papers on the no-cloning theorem see Wootters and Zurek (1982), Dieks (1982) .  For further extensions see D’ariano and Yuen (1996) , Lindblad (1999). On the issue of state discrimination see D’ariano et al. (2017, Sect. 2.8.6).

  8. 8.

    As recalled in Auletta and Wang (2014, Sect. 7.4).

  9. 9.

    The reader can see a more complete exposition in Auletta et al. (2009a, Chaps. 2–3). For a shorter summary see Auletta and Wang (2014, Sect. 4.6).

  10. 10.

    See Auletta et al. (2009a, Sect. 3.6). Auletta and Wang (2014, Sect. 7.5).

  11. 11.

    On this see Bokulich (2008, p. 55).

  12. 12.

    Landau and Lifshitz (1976, Sect. 46).

  13. 13.

    Kolmogorov (1933) , Gnedenko (1969, p. 48).  The latter is a classical textbook on probability theory. See also Landsman (2017, Sect. 1.1).

  14. 14.

    A beam merger is like a beam splitter but works the other way around.

  15. 15.

    The first idea was proposed in Renninger (1960). For some additional material see Auletta (2000, pp. 353–358), Auletta et al. (2009a, Sect. 9.6).

  16. 16.

    The MZ interferometer version of the interaction-free measurement was proposed for the fist time in Elitzur and Vaidman (1993)   .

  17. 17.

    I have followed here Auletta et al. (2009a, Sect. 1.4).

  18. 18.

    What is to a certain extent also supported in Margenau (1950, Sects. 8.5 and 15.4).

  19. 19.

    For this argument see Bohr (1949a, pp. 219–220).

  20. 20.

    In D’ariano et al. (2017, Sect. 5.1)  this is expressed by saying that measurement outcomes become irrelevant in a classical framework.

  21. 21.

    Ludwig (1983, I, pp. 55–56).

  22. 22.

    Ludwig used the term registration apparatus for denoting the detector (Ludwig 1983, I, p. 8).

  23. 23.

    These arguments are also summarised in Auletta and Wang (2014, Sect. 9.1).

  24. 24.

    The following arguments have been presented in Auletta et al. (2009a, Sect. 2.3) and a little expanded in Auletta and Wang (2014, Sect. 6.9).

  25. 25.

    As pointed out in Conway and Kochen (2006, 2009).  See also Bohr (1949a, p. 230) , Landsman (2017, Sects. 6.2–6.3).

  26. 26.

    Heisenberg (1927).

  27. 27.

    I address the reader to von Neumann (1932, Chap. 6).  This textbook was for a longer time the sole formal and conceptual treatment of quantum measurement. Apart from QM, the contributions of von Neumann are fundamental in many fields, ranging from cellar automata going through game theory up to the foundations of modern computation.

  28. 28.

    I follow here the exposition in Auletta et al. (2009a, Sect. 9.1).

  29. 29.

    This is the essence of abduction and induction,  a problem on which I shall come back later.

  30. 30.

    As pointed out in Tarozzi (1996).

  31. 31.

    Descartes (1641a).

  32. 32.

    As we shall discover, as far as Descartes’ standpoint would be limited to the statement that the operations of the mind respond to different processes than the operations of the body, I would agree. But this does not imply the existence of two separated substance (in the metaphysical language of that time).

  33. 33.

    This problem worried very much J. Bell: see Bell (1981).

  34. 34.

    For a summary see Auletta (2000, Chap. 14).   See also Conway and Kochen (2006).

  35. 35.

    This wide subject is known as the path-integral approach: see Feynman and Hibbs (1965).  For a synthesis see also Auletta et al. (2009a, Sect. 10.8).

  36. 36.

    In fact, one distinguishes between the subjectivist idealism of Ancient philosophy whose reference scholar is the Greek philosopher Plato (V–IV century BC) and the objectivist idealism of modern times whose most important representatives are the German Philosopher Friedrich W. J. Schelling (1775–1854) and the German theologian and philosopher George W. F. Hegel (1770–1831).

  37. 37.

    For a reprint of all main standpoints see Wheeler and Zurek (1983).  See also Auletta (2000, Part IV).

  38. 38.

    Schrödinger (1935). For historical context and reconstruction see Mehra and Rechenberg (1982–2001, VI, p. 738 ff.).  For a synthesis of the problem with more recent approaches and experiments see Auletta et al. (2009a, Sect. 9.3) while for a short summary see also Auletta and Wang (2014, Sect. 9.8).

  39. 39.

    Auletta (2000, p. 362).

  40. 40.

    Likely the most influential one in the history of physics.

  41. 41.

    Einstein et al. (1935, p. 138).  For this section I invite the reader also to consider Auletta (2000, Part IX), Auletta et al. (2009a, Sect. 16.1), Auletta and Wang (2014, Chap. 10).

  42. 42.

    Auletta (2000, p. 534).

  43. 43.

    Popper (1934).

  44. 44.

    See Einstein (1930, 1934).

  45. 45.

    Chaitin et al. (2011, pp. 75–79).

  46. 46.

    This insight can be found in Tarozzi (1988) , more recently reformulated in Auletta et al. (2009b): see also further references therein. It can be further considered Auletta (2011a, Sect. 2.2.6). It might be also interesting to have a look at Eddington (1939, pp. 46–48).

  47. 47.

    Margenau insists that metaphysical conceptual elements are even necessary (Margenau 1950, pp. 12–13).

  48. 48.

    The model was first proposed in Bohm (1951, pp. 614–623).

  49. 49.

    I follow here Auletta et al. (2009a, Sect. 16.2) and Auletta and Wang (2014, Sect. 10.3).

  50. 50.

    Schrödinger (1936).

  51. 51.

    Schrödinger (1935).

  52. 52.

    See also Auletta (2000, pp. 536–537).

  53. 53.

    See e.g. Einstein (1948).

  54. 54.

    For a historical reconstruction of the problems around the EPR paper see Jammer (1974, Chap. 6).

  55. 55.

    As pointed out in Maudlin (1994, p. 23).

  56. 56.

    Earman (1986).

  57. 57.

    Einstein (1905, 1909). For a summary of special and general relativity I invite the reader to read Einstein (1917, 1922, 2006).  For a good exposition of relativity see French (1968).  while for a clear presentation with philosophical examination of some consequences see Friedman (1983).

  58. 58.

    French (1968, Chap. 1).  Note that French already remarked that CM did not set specific limitations on the speed of bodies.

  59. 59.

    Galilei (1632, 2nd day).

  60. 60.

    As pointed out in Rindler (2001, p. 6).

  61. 61.

    Rindler (2001, p. 56).  However, it may be noted that in the original EPR experiment the two entangled systems are considered as connected by a rigid bar.

  62. 62.

    I follow here the derivation in French (1968, Chap. 3).

  63. 63.

    Lorentz (1904).

  64. 64.

    French (1968, Chap. 4).

  65. 65.

    Rindler (2001, p. 12).

  66. 66.

    Rindler (2001, pp. 39–40).

  67. 67.

    Rindler (2001, p. 15).

  68. 68.

    I follow here the derivation in French (1968, Chap. 1).

  69. 69.

    Rindler (2001, p. 8).

  70. 70.

    Rindler (2001, p. 113).

  71. 71.

    Penrose (2004, Sects. 17.1–17.2) , Geroch (1978, Chaps. 1–4).

  72. 72.

    Penrose (2004, Chap. 15).

  73. 73.

    Minkowski (1907–1908).  See also Malament (2012, p. 110).

  74. 74.

    Misner et al. (1970, p. 10).

  75. 75.

    Misner et al. (1970, p. 241).

  76. 76.

    Although one could hypothesise the existence of superluminal particles (the so-called tachyons) without physical inconsistencies, it is also admitted that this move would be of no use for solving the EPR problem (Maudlin 1994, pp. 72–80).

  77. 77.

    But the convention \((-+++)\) is also used.

  78. 78.

    Schwartz (2014, Chap. 10).

  79. 79.

    Peirce (1903a, pp. 272–273), Peirce (1903b, pp. 170–171) , Peirce (1903c, 1.345–346), Peirce (1958, 5.472).

  80. 80.

    Peirce (1958, 1.326).

  81. 81.

    Nevertheless, starting from the fact that dyadic relations represent a kind of resistance to certain classes of action, he interpreted the latter as dynamical while understood triadic relations as displaying accordance with a law, what can be considered even as a reversal of the above distinction (Peirce 1958, 5.472).  This was pointed out in Auletta (2011a, Sect. 3.2.3). See also Auletta (2016).

  82. 82.

    The reader might take into account the rather technical exposition in Ruelle (1990).

  83. 83.

    Poincaré (1907).

  84. 84.

    As first pointed out in Howard (1985).

  85. 85.

    This distinction was first formulated in Popescu and Rohrlich (1994).  See also Auletta (2011c), Ferrero and Sánchez–Gómez (2013). We shall come back on this problem.

  86. 86.

    Clauser et al. (1969).

  87. 87.

    Einstein (1948).

  88. 88.

    Descartes (1641a, pp. 25–26), and relative objections of Gassendi with responses.

  89. 89.

    Leibniz (1686, 1695a, b).

  90. 90.

    de La Forge (1666) , Geulincx (1669) , Malebranche (1674–1678). See also Auletta (1992).

  91. 91.

    “Leibniz an des Bosses”, 1st Sept. 1706: Leibniz (1875, II, 313–314); “Leibniz an des Bosses”, 26th May 1712: Leibniz (1875, II, 444–445).

  92. 92.

    Leibniz (1710–1712, Sects. 13–15), Leibniz (1712–1714, Sects. 7 and 56–57).

  93. 93.

    Leibniz (1702).

  94. 94.

    As expressed in the famous treatise “Monadologie” Leibniz (1712–1714, Sect. 61).  See also Leibniz (1710, I, Sect. 9).

  95. 95.

    A problem pointed out in Peirce (1886).  Peirce calls this the iconic side of signs and representations.

  96. 96.

    On this difficult subject see the well-documented book (Earman 1989).  Although I do not always agree with some of the conclusions it is a fundamental reference work.

  97. 97.

    Leibniz (1715–1716).  See also the historical reconstruction in Koyré (1957, Chaps. 7–11).

  98. 98.

    Newton (1687).  See also Koyré (1966).

  99. 99.

    Mach (1883).  However, later on Einstein took more and more distance from E. Mach (Home and Whitaker 2007, Chap. 1),  for reasons that are not very different from those that led him to took the distance from Bridgman’s philosophy, as we shall see.

  100. 100.

    Einstein (1948).

  101. 101.

    An interpretation that it is likely to have been formulated by one of the fathers of the theory of symmetries, the German mathematician and physicist Hermann Weyl (1885–1955) for the first time (Weyl 1949).  Interesting are the conversation between Popper and Einstein in which the former defined this vision as Parmenidean (Popper 1974, pp. 148–150).  For a brief and untechnical examination of the problem see Auletta (2011a, Sect. 3.3.4).

  102. 102.

    Spinoza (1677).  The late Einstein was indeed very much influenced by Spinoza: on this subject and on the general religious background of Einstein see Jammer (1999).

  103. 103.

    Leibniz (1715–1716, p. 25) : “Continuatis autem in tempore, extensione, qualitatibus, motives, omnique naturae transitu reperitur, qui numquam fit per saltum”.

  104. 104.

    Leibniz (1712–1714) , Boscovich (1754).

  105. 105.

    See e.g. Locke (1689, B. II, Chap. VIII, parr. 9–13).  See also Mccann (1994).

  106. 106.

    Boscovich (1763), Kant (1747, 1756).

  107. 107.

    Leibniz (1712–1714, Sect. 32) : “Nous considerons qu’aucun fait ne sauroit se trover vray ou existant, aucune Enontiation veritable, sans qu’il y ait une raison suffisante, pourquoy il en soit ainsi et non pas autrement, quoyque ces raisons le plus souvent ne puissent point nous tre connues”. See also Leibniz (1677). About the potential conflict between the classical principle of sufficient reason and QM see Auletta (2006).

  108. 108.

    Bohr (1928).

  109. 109.

    Kistler (2006, p. 9).

  110. 110.

    On this the work of the French physics and mathematician Laplace is paradigmatic Laplace (1825).

  111. 111.

    Quoted in D’ariano et al. (2017, Sect. 5.1).  I fully agree with what the authors say here about the confusion causality–determinism.

  112. 112.

    D’ariano et al. (2017, Sect. 5.1).

  113. 113.

    In Mehra and Rechenberg (1982–2001, VI, p. 678) , a definition of a physics dictionary has been reported: “The physicist considers causality as identical with determinism, that is, with the unique fixing of the future events by the present ones according to the laws of nature”.

  114. 114.

    Poincaré (1911, p. 49).

  115. 115.

    Born (1949b, Chaps. 2–4).

  116. 116.

    Although a deterministic mechanics is still possible that does not satisfy continuity: see Auletta (2004).

  117. 117.

    Hume (1777, pp. 32–47).

  118. 118.

    Russell (1912–1913).

  119. 119.

    Norton (2003).

  120. 120.

    Bohr (1928).

  121. 121.

    Darwin (1859).  On these problems, see also Auletta (2011b, Chap. 9), Auletta and Pons (2013).

  122. 122.

    Zeilinger (1999, 2000).

  123. 123.

    The reader may also have a look at Auletta (2011b, Chap. 1), Auletta and Wang (2014, Sects. 7.3 and 9.5).

  124. 124.

    Born (1926).  For historical reconstruction see Mehra and Rechenberg (1982–2001, VI, p. 678 ff.).

  125. 125.

    Armstrong (1983, Chaps. 2–3).  This philosopher has contributed very much to our understanding of the laws of Nature.

  126. 126.

    Armstrong (1983, p. 31).

  127. 127.

    Bird (2007). See also Carroll (1994)  for further references to the philosophical discussion on the laws of Nature.

  128. 128.

    See also Kistler (2006, p. 67).

  129. 129.

    Mach (1905) , Cassirer (1910).

  130. 130.

    See van Fraassen (1989), especially p. 275.

  131. 131.

    It seems that E. Anscombe has been the first scholar to have proposed a particularist view of causality (Anscombe 1971).

  132. 132.

    This why Margenau tells us that causality is nothing else than a law ruling the transformation of a physical state into another minus the temporal dimension (Margenau 1950, Chap. 19).

  133. 133.

    Auletta (2005).

  134. 134.

    Poincaré (1907).

  135. 135.

    Poincaré (1907).

  136. 136.

    Tryon (1973) .

  137. 137.

    See Shimony (1965)  for interesting comments on Whitehead relative to this issue.

  138. 138.

    Laplace (1796, pp. 541–544).

  139. 139.

    Bohr (1949a, p. 230).

  140. 140.

    See Auletta (2000, p. 131).

  141. 141.

    Wheeler (1978).   See also the summaries in Auletta et al. (2009a, Sect. 9.6), Auletta and Wang (2014, Sect. 5.6).

  142. 142.

    Such a description can be found in Auletta (2000, p. 448).

  143. 143.

    See Auletta (2000, pp. 449–451).

  144. 144.

    Hellmuth et al. (1987).  Recently, a delayed–choice experiment has been performed with single atoms Manning et al. (2015).  Again, we may note that very different kinds of quantum systems essentially have the same behaviour in similar physical contexts.

  145. 145.

    First by the Austrian mathematician Gödel (1949) and then more recently in philosophy: see Lewis (1976).  See also Maudlin (1994, Chaps. 4–5).

  146. 146.

    A similar point has been discussed in Kistler (2006, pp. 34–35).

  147. 147.

    Malament (2012, Sect. 2.2).  See also Malament (1977).

  148. 148.

    Greenberger and Svozil (2005).

References

  • Anscombe, G. Elizabeth M. 1971. Causality and Determination. Cambridge: Cambridge University Press; rep. in [Sosa/Tooley 1993, 88–104].

    Google Scholar 

  • Armstrong, David M. 1983. What is a Law of Nature. Cambridge: Cambridge University Press.

    Google Scholar 

  • Auletta, Gennaro. 1992. Sémiotique et problématique corps-esprit chez Leibniz et les Occasionnalistes. Histoire Epistémologie Language 14 (2): 85–106.

    Article  Google Scholar 

  • Auletta, Gennaro. 2000. Foundations and Interpretation of Quantum Mechanics: In the Light of a Critical-Historical Analysis of the Problems and of a Synthesis of the Results. Singapore: World Scientific; rev. ed. 2001.

    Google Scholar 

  • Auletta, Gennaro. 2004. Critical Examination of the Conceptual Foundations of Classical Mechanics in the Light of Quantum Physics. Epistemologia 27: 55–82.

    MATH  Google Scholar 

  • Auletta, Gennaro. 2005. Quantum Information and Inferential Reasoning. Foundations of Physics 35: 155–169.

    Article  ADS  MathSciNet  Google Scholar 

  • Auletta, Gennaro. 2006. The Ontology Suggested by Quantum Mechanics. In Topics on General and Formal Ontology, ed. Valore, Paolo, 161–179. Monza: Polimetrica International Scientific Publisher.

    Google Scholar 

  • Auletta, Gennaro. 2011a. (in collaboration with I. Colagè, P. D’ambrosio, and L. Torcal), Integrated Cognitive Strategies in a Changing World. Rome: G and B Press.

    Google Scholar 

  • Auletta, Gennaro. 2011b. Cognitive Biology: Dealing With Information from Bacteria to Minds. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Auletta, Gennaro. 2011c. Correlations and Hyper-Correlations. Journal of Modern Physics 2: 958–961. https://doi.org/10.4236/jmp.2011.29114, http://www.scirp.org/journal/PaperInformation.aspx?paperID=7135.

    Article  ADS  Google Scholar 

  • Auletta, Gennaro. 2016. Critical Examination of Peirce’s Theory of Categories. SCIO: Journal of Philosophy 12: 23–49.

    Google Scholar 

  • Auletta, G., and S. Pons Domenech (eds.). 2013. Si può parlare oggi di una finalità dell’evoluzione? Riflessioni filosofiche e teologiche alla luce della scienza contemporanea. Rome: G and B Press.

    Google Scholar 

  • Auletta, G., and S.-Y. Wang. 2014. Quantum Mechanics for Thinkers. Singapore: Pan Stanford Pub. https://doi.org/10.4032/9789814411721.

    Book  MATH  Google Scholar 

  • Auletta, G., M. Fortunato, and G. Parisi. 2009a. Quantum Mechanics. Cambridge: Cambridge University Press; rev. paperback ed. 2013.

    Google Scholar 

  • Auletta, G., M. Alai, and G. Tarozzi. 2009b. Einstein’s Local Realism and the Realistic Interpretation of the Wave Function C. ALUNNI – M. CASTELLANA – D. RIA– A. ROSSI eds. A. Einstein et H. Weyl (1955–2005). Questions épistémologiques ouvertes Paris–Maglie 33–49.

    Google Scholar 

  • Bell, John S. 1981. Quantum Mechanics for Cosmologists. In Quantum Gravity 2, ed. Isham, C.J., R. Penrose, and D. Sciama. Oxford: Clarendon; rep. in [Bell 1987, 117–138].

    Google Scholar 

  • Bell, John S. 1987. Speakable and Unspeakable in Quantum Mechanics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Bird, Alexander. 2007. Nature’s Metaphysics: Laws and Properties. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Bohm, David. 1951. Quantum Theory. New York: Prentice-Hall.

    Google Scholar 

  • Bokulich, Alisa. 2008. Reexamining the Quantum-Classical Relation: Beyond Reductionism and Pluralism. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Born, Max. 1926. Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 38: 803–827.

    Article  ADS  Google Scholar 

  • Born, Max. 1949a. Discussion With Einstein on Epistemological Problems in Atomic Physics, in [Schilpp 1949, 201–241].

    Google Scholar 

  • Born, Max. 1949b. Natural Philosophy of Chance and Cause. New York, Oxford: Clarendon.

    Google Scholar 

  • Bohr, Niels. 1928. The Quantum Postulate and the Recent Development of Atomic Theory. Nature 121: 580–590; rep. in [Bohr CW, VI, 148–158].

    Google Scholar 

  • Bohr, Niels. 1985–1996. Collected Works. Amsterdam, North Holland.

    Google Scholar 

  • Boscovich, Rogerius J. 1754. De continuitatis lege and ejus consectariis, pertinentibus ad prima materiae elementa eorumque vires. Roma: Collegio Romano.

    Google Scholar 

  • Boscovich, Rogerius J. 1763. Theoria philosophiæ  naturalis redacta ad unicam legem virium in natura existentium Venezia; Vienna.

    Google Scholar 

  • Carroll, John W. 1994. Laws of Nature. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Cassirer, Ernst. 1910. Substanzbegriff und Funktionsbegriff, Berlin. Darmstadt: Wissenschaftliche Buchgesellschaft, 1994.

    Google Scholar 

  • Chaitin, G.J., N. da Costa, and F.A. Doria. 2011. GödelÕs Way: Exploits into an Undecidable World. Milton Park: Taylor and Francis.

    MATH  Google Scholar 

  • Chappell, Vere (ed.). 1994. The Cambridge Companion to Locke. Cambridge: Cambridge University Press.

    Google Scholar 

  • Clauser, J.F., M.A. Horne, A. Shimony, and R.A. Holt. 1969. Proposed Experiment to Test Local Hidden-Variable Theories. Physical Review Letters 23: 880–884; rep. in [Wheeler/Zurek 1983, 409–413].

    Article  ADS  Google Scholar 

  • Conway, J., and S. Kochen. 2006. The Free Will Theorem. Foundations of Physics 36: 1441–1473. https://doi.org/10.1007/s10701-006-9068-6.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Conway, J., and S. Kochen. 2009. The Strong Free Will Theorem. Notices of the AMS 56 (2): 226–232.

    MathSciNet  MATH  Google Scholar 

  • D’Ariano, G.M., and H.P. Yuen. 1996. Impossibility of Measuring the Wave Function of a Single Quantum System. Physical Review Letters 76: 2832–2835.

    Article  ADS  Google Scholar 

  • D’Ariano, M., G. Chiribella, and P. Perinotti. 2017. Quantum Theory from First Principles: An informational approach. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Darwin, Charles R. 1859. The Origin of Species, London, Murray. 6th ed., 2009. Cambridge: Cambridge University Press.

    Google Scholar 

  • de La Forge, Louis. 1666. Traité de l’Esprit de l’Homme, de ses faculté ou fonctions et de son union avec le corps. Suivant les principes de René Descartes. Amsterdam: A. Wolfgang; Hildesheim: Olms.

    Google Scholar 

  • Descartes, René. 1641a. Meditationes de prima philosophia, Paris; in: [Descartes Œ, VII].

    Google Scholar 

  • Descartes, René. 1641b. Meditationes de prima philosophia. In Œuvres, ed. C. Adam. 1907–1913 and P. Tannery. 1964–1974. Paris: Vrin.

    Google Scholar 

  • Deutsch, David. 1997. The Fabric of Reality: The Science of Parallel Universes and its Implications. London: Penguin Books.

    Google Scholar 

  • Deutsch, David. 2011. The Beginning of Infinity: Explanations that Transform the World. London: Penguin Books.

    MATH  Google Scholar 

  • Dieks, Dennis. 1982. Communication by EPR Devices. Physics Letters 92A: 271–272.

    Article  ADS  Google Scholar 

  • Earman, John. 1986. A Primer on Determinism. Dordrecht: Reidel.

    Book  Google Scholar 

  • Earman, John. 1989. World Enough and Space-Time: Absolute vs. Relational Theories of Space and Time. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Eddington, Arthur Stanley. 1934. On the Method of Theoretical Physics, Philosophy of Science 1: 163–169; eng. tr. of [Eddington (1930)].

    Google Scholar 

  • Eddington. 1939. Philosophy of Physical Science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Einstein, Albert. 1905. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annalen der Physik 17: 132–148.

    Article  ADS  Google Scholar 

  • Einstein, Albert. 1909. Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung. Physikalische Zeitschrift 10: 817–825.

    MATH  Google Scholar 

  • Einstein, Albert. 1917. Über die spezielle und die allgemeine Relativitätstheorie. Braunschweig: Vieweg.

    Google Scholar 

  • Einstein, Albert. 1922. Vier Vorlesungen über Relativitätstheorie. Braunschweig: Viewer; 2nd ed. with the title Grundzüge der Relativitätstheorie, 1956.

    Google Scholar 

  • Einstein, Albert. 1930. Zur Methodik der Theoretischen Physik, rep. in [Einstein 1993, 113–119].

    Google Scholar 

  • Einstein, Albert. 1948. Quantenmechanik und Wirklichkeit. Dialectica 2: 320–324.

    Article  Google Scholar 

  • Einstein, Albert. 1993. Mein Weltbild. Frankfurt: Ullstein.

    Google Scholar 

  • Einstein, Albert. 2006. Relativity: The Special and The General Theory, Penguin, eng. tr. of [Einstein 1917]

    Google Scholar 

  • Einstein, A., B. Podolsky, and N. Rosen. 1935. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Physical Review 47: 777–780; rep. in [Wheeler/Zurek 1983, 138–141].

    Article  ADS  Google Scholar 

  • Elitzur, A.C., and L. Vaidman. 1993. Quantum Mechanical Interaction-Free Measurements. Foundations of Physics 23: 987–997.

    Article  ADS  Google Scholar 

  • Elitzur, A.C., S. Dolev, and N. Kolenda (eds.). 2005. Quo Vadis Quantum Mechanics?. Berlin: Springer.

    MATH  Google Scholar 

  • Ferrero, M., and J.L. Sánchez-Gómez. 2013. Heuristic Classification of Physical Theories based on Quantum Correlations. EuroPhysics Journal Plus 128: 65. https://doi.org/10.1140/epjp/i2013-13065-5.

    Article  ADS  Google Scholar 

  • Feynman, R.P., and A.R. Hibbs. 1965. Quantum Mechanics and Path Integrals. New York: McGraw-Hill; emended edition by Daniel F. New York: Dover: Styer, 2005.

    Google Scholar 

  • French, A.P. 1968. Special relativity. New York: W.W. Norton and Company.

    Google Scholar 

  • Friedman, Michael. 1983. Foundations of Space–Time Theories. Relativistic Physics and Philosophy of Science. Princeton: Princeton University Press.

    Google Scholar 

  • Galilei, Galileo. 1632. Dialogo sui Massimi sistemi. In ed. L. Sosio. 1970. Torino: Einaudi.

    Google Scholar 

  • Gerlach, W., and O. Stern. 1968. Sämtliche Schriften. In ed. J.P.N. Land. 1891–1893. Frommann: Den Haag; rep. Stuttgart-Bad Cannstatt.

    Google Scholar 

  • Geroch, Robert. 1978. General Relativity from A to B. Chicago: University of Chicago Press.

    Google Scholar 

  • Geulincx, Arnold. 1669. Metaphysica vera; in [Geulincx SS, II, 137–198].

    Google Scholar 

  • Gnedenko, Boris V. 1969. The Theory of Probability. Moscow: Mir.

    Google Scholar 

  • Gödel, Kurt. 1949. A Remark About the Relationship Between Relativity Theory and Idealistic Philosophy, in [Schilpp 1949, 557–562].

    Google Scholar 

  • Greenberger, D.M., and K. Svozil. 2005. Quantum Theory Looks at Time Travel, in [Elitzur et al. 2005, 63–71].

    Google Scholar 

  • Heisenberg, Werner. 1927. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik 43: 172–198; rep. in [Heisenberg GW, A.I, 478–504].

    Google Scholar 

  • Heisenberg, Werner. 1984. Gesammelte Werke. München/Berlin: Piper/Springer.

    Google Scholar 

  • Hellmuth, T., H. Walther, A.G. Zajonc, and W.P. Schleich. 1987. Delayed-Choice Experiments in Quantum Interference. Physical Review A35: 2532–2541.

    Article  ADS  Google Scholar 

  • Home, D., and M.A.B. Whitaker. 2007. Einstein’s Struggles with Quantum Theory: A Reappraisal. Berlin: Springer.

    MATH  Google Scholar 

  • Howard, Don. 1985. Einstein on Locality and Separability. Studies in History and Philosophy of Science 16: 171–201.

    Article  MathSciNet  Google Scholar 

  • Hume, David. 1777. Enquiries Concerning Human Understanding and Concerning the Principles of Morals, 2nd ed. 1902; 3rd ed. 1975. London, Oxford: Clarendon.

    Google Scholar 

  • Jammer, Max. 1974. The Philosophy of Quantum Mechanics. The Interpretation of Quantum Mechanics in Historical Perspective. New York: Wiley.

    Google Scholar 

  • Jammer, Max. 1999. Einstein and Religion. Princeton: Princeton University Press.

    Google Scholar 

  • Kant, Immanuel. 1747. Gedanken von der wahren Schätzung der lebendigen Kräfte ...; in [Kant A, I, 1–182].

    Google Scholar 

  • Kant, Immanuel. 1756. Metaphysicæcum geometria iunctæ  usus in philosophia naturali, cuius Specimen I continet Monadologiam Physicam; in [Kant A, I, 1–182].

    Google Scholar 

  • Kant, Immanuel. 1968. Kants Werke. Akademie Textausgabe. Berlin: W. de Gruyter.

    Google Scholar 

  • Kistler, Max. 2006. Causation and Laws of Nature. Abingdon: Routledge.

    Book  Google Scholar 

  • Kolmogorov, Andrei N. 1933. Grundbegriffe der Wahrscheinlichkeitsrechnung. Berlin: Julius Springer.

    Book  Google Scholar 

  • Koyré, Alexandre. 1957. From the Closed World to the Infinite Universe. Baltimore: John Hopkins Press.

    Google Scholar 

  • Koyré. 1966. Etudes galiléennes. Paris: Hermann.

    Google Scholar 

  • Landau, Lev D., and E.M. Liftshitz. 1976. Mechanics (eng. tr.), I vol. of The Course of Theoretical Physics. Oxford: Pergamon.

    Google Scholar 

  • Landsman, Klaas. 2017. Foundations of Quantum Theory: From Classical Concepts to Operator Algebras. Berlin: Springer.

    Book  Google Scholar 

  • Laplace, Pierre–Simon de. 1796. Exposition du système du monde. Paris: Fayard.

    Google Scholar 

  • Laplace, Pierre–Simon de. 1825. Essai philosophique sur les probabilités, 5th ed. 2009. Cambridge: Cambridge University Press.

    Google Scholar 

  • Leibniz, Gottfried W. 1666. Philosophische Schriften. In ed., Gerhardt. 1875. Halle; rep. Hildesheim: Olms 1978.

    Google Scholar 

  • Leibniz, Gottfried W. 1677. Specimen inventorum de admirandis naturæ  generaliz arcanis [Leibniz PS, VII, 309–318].

    Google Scholar 

  • Leibniz, Gottfried. 1686. Brevis Demonstratio Erroris Mirabilis Cartesii et aliorum .... Acta Eruditorum Lipsiensium, in [Leibniz MS, VI, 117–123].

    Google Scholar 

  • Leibniz, Gottfried W. 1695a. Systeme nouveau de la nature et de la communication des substances, aussi bien que de l’union qu’il y a entre l’ame et le corps. Journal des Savants; [Leibniz PS, IV, 477–487].

    Google Scholar 

  • Leibniz, Gottfried W. 1695b. Specimen Dynamicum pro admirandis NaturæLegibus circa corporum vires et mutuas actiones detegendis et ad suas causas revocandis. Pars I. Acta Eruditorum Lipsiensium; rep. in [Leibniz MS, VI, 234–246].

    Google Scholar 

  • Leibniz, Gottfried W. 1702. Extrait du Dictionnaire de M. Bayle article Rorarius p. 2599 sqq. de l’Edition de l’an 1702 avec mes remarques, in [Leibniz PS, IV, 524–554].

    Google Scholar 

  • Leibniz, Gottfried W. 1710. Essais de Théodicée; in [Leibniz PS, VI, 21–436].

    Google Scholar 

  • Leibniz, Gottfried W. 1710–1712. Principes de la Nature et de la Grace, in [Leibniz PS, VI, 598–606].

    Google Scholar 

  • Leibniz, Gottfried W. 1712–1714. Monadologie, in [Leibniz PS, VI, 607–623].

    Google Scholar 

  • Leibniz, Gottfried W. 1715–1716. Streitschriften zwischen Leibniz und Clarke, in [Leibniz PS, VII, 345–440]. Published before as A Collection of Papers, Which Passed Between the Late Learned Mr. Leibniz and Dr. Clarke in the Years 1715 and 1716, Relating to the Principles of Natural Philosophy and Religion, London, 1717.

    Google Scholar 

  • Leibniz, Gottfried W. 1875. Philosophische Schriften, In ed. Gerhardt. Halle; rep. Olms: Hildesheim, 1978.

    Google Scholar 

  • Lewis, David. 1976. The Paradoxes of Time Travel. American Philosophical Quarterly 13: 145–152; rep. in [Lewis PP, II, 67–80].

    Google Scholar 

  • Lewis, David. 1983. Philosophical Papers. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Lindblad. 1999. A General No-Cloning Theorem. Letters in Mathematical Physics 47: 189–196. https://doi.org/10.1023/a:1007581027660.

    Article  MathSciNet  Google Scholar 

  • Locke, John. 1689. An Essay Concerning Human Understanding, 2nd ed. 1694; 4th ed. 1700. Oxford: Oxford University Press.

    Google Scholar 

  • Lorentz, Hendrik A. 1904. Electromagnetic Phenomena in a System Moving with any Velocity Smaller than that of Light. Proceedings of the Royal Netherlands Academy of Arts and Sciences 6: 809–831.

    Google Scholar 

  • Ludwig, Güunther. 1954. Die Grundlagen der Quantenmechanik. Berlin: Springer.

    Book  Google Scholar 

  • Ludwig, Günther. 1978. Die Grundstrukturen einer physikalischen Theorie, 2nd ed. 1990. Berlin: Springer.

    Google Scholar 

  • Ludwig, Günther. 1983. Foundations of Quantum Mechanics. Berlin: Springer; eng. tr. of [Ludwig 1954].

    Google Scholar 

  • Mach, Ernst. 1883. Die Mechanik in Ihrer Entwicklung. Historisch-kritisch dargestellt, 9th ed. 1933. Leipzig, Darmstadt: WBG.

    Google Scholar 

  • Mach, Ernst. 1905. Erkenntnis und Irrtum, 2nd ed. 1906; 5th ed. 1926. Leipzig, Darmstadt: WBG.

    Google Scholar 

  • Malament, David B. 1977. The Class of Continuous Timelike Curves Determines the Topology of Spacetime. Journal of Mathematical Physics 18: 1399–1404. https://doi.org/10.1063/1.523436.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Malament, David B. 1979. Œuvres. In ed. G. Rodis–Lewis. Paris: Pleiade.

    Google Scholar 

  • Malament, David B. 2012. Topics in the Foundations of General Relativity and Newtonian Gravitation Theory. Chicago: Chicago University Press.

    Book  Google Scholar 

  • Malebranche, Nicolas. 1674–1678. De la recherche de la verité, 6th ed. 1712. Paris; in [Malebranche Œ, I, 1–1126].

    Google Scholar 

  • Manning, A.G., R.I. Khakimov, R.G. Dall, and A.G. Truscott. 2015. Wheeler’s Delayed-Choice Gedanken Experiment with a Single Atom. Nature Physics 11: 539–542. https://doi.org/10.1038/nphys3343.

    Article  ADS  Google Scholar 

  • Margenau, Henry. 1950. The Nature of Physical Reality: A Philosophy of Modern Physics. New York: McGraw-Hill; Woodbridge, CT.: Ox Bow Press. 1977.

    Google Scholar 

  • Maudlin, Tim. 1994. Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics, 2nd ed. 2002. Oxford: Blackwell.

    Google Scholar 

  • Marlow, A.R. (ed.). 1978. Mathematical Foundations of Quantum Theory. New York: Academic.

    Google Scholar 

  • McCann, Edwin. 1994. Locke’s Philosophy of Body, in [Chappel 1994, 56–88].

    Google Scholar 

  • Mehra, J., and H. Rechenberg. 1982–2001. The Historical Development of Quantum Theory. New York: Springer.

    Google Scholar 

  • Minkowski, Hermann. 1907–1908. Die Grundgleichungen fũr die elektromagnetischen Vorgänge in bewegten Körpern. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1907–1908: 53–111.

    Google Scholar 

  • Misner, C.W., K.S. Thorne, and J.A. Wheeler. 1970. Gravitation. San Francisco: Freeman and Co.

    Google Scholar 

  • Newton, Isaac. 1687. Philosophiæ Naturalis Principia Mathematica, London; Cambridge, 1713; London, 1726; Harvard: Harvard University Press. 1972. (ed. Cohen): A. Koyré and I. B.

    Google Scholar 

  • Norton, John D. 2003. Causation as Folk Science. Philosophers’ Imprint 3 (4): 1–22.

    Google Scholar 

  • Peirce, Charles S. 1886. An Elementary Account of the Logic of Relatives, in [Peirce W, V, 379–387].

    Google Scholar 

  • Peirce, Charles S. 1903a. Sundry Logical Conceptions, in [Peirce EP, II, 267–288].

    Google Scholar 

  • Peirce, Charles S. 1903b. The Categories Defended, in [Peirce EP, II, 160–178].

    Google Scholar 

  • Peirce, Charles S. 1903c. Thirdness — The Reality of Thirdness, in [Peirce CP, 1.343–349].

    Google Scholar 

  • Peirce, C.P. 1958. The Collected Papers, vol. I–VI (ed. Charles Hartshorne and Paul Weiss). Cambridge: Harvard University Press. 1931–1935; vol. VII–VIII (ed. Arthur W. Burks), Cambridge: Harvard University Press.

    Google Scholar 

  • Peirce, Charles S. 1982. Writings, vol. I. Bloomington: Indiana University Press.

    MATH  Google Scholar 

  • Peirce, Charles S. 1998. The Essential Peirce, vols. I–II. Bloomington: Indiana University Press.

    Google Scholar 

  • Penrose, Roger. 2004. The Road to Reality: A Complete Guide to the Laws of the Universe. J. Cape, London: Vintage.

    Google Scholar 

  • Poincaré, Henri. 1907. Le hasard. Revue du mois 3: 257–276; rep. in [Poincaré 1991,135–156].

    Google Scholar 

  • Poincaré, Henri. 1911. L’évolution des lois. Scientia. Rivista di scienza 9 (4): 275–292; rep. in [?, 48–67].

    Google Scholar 

  • Poincaré, Henri. 1991. L’analyse et la recherche. Paris: Hermann.

    Google Scholar 

  • Popescu, S., and D. Rohrlich. 1994. Quantum Nonlocality as an Axiom. Foundations of Physics 24: 379–385.

    Article  ADS  MathSciNet  Google Scholar 

  • Popper, Karl R. 1934. Logik der Forschung. Wien: Springer; 8th ed. 1984. Tübingen: Mohr.

    Google Scholar 

  • Popper, Karl R. 1974. Unended Quest: An Intellectual Autobiography. London: Routledge.

    Google Scholar 

  • Renninger, Mauritius K. 1960. Messungen ohne Störung des Meßobjekts. Zeitschrift für Physik 158: 417–421.

    Article  ADS  Google Scholar 

  • Rindler, Wolfgang. 2001. Relativity: Special, General, and Cosmological. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Ruelle, David. 1990. The Claude Bernard Lecture, 1989. Deterministic Chaos: The Science and the Fiction. Proceedings of the Royal Society of London A427: 241–248.

    Article  ADS  MathSciNet  Google Scholar 

  • Russell, Bertrand. 1912–1913. On the Notion of Cause. Proceedings of the Aristotelian Society 13: 1–26.

    Google Scholar 

  • Schilpp, Arthur (ed.). 1949. Albert Einstein. Philosopher-Scientist. La Salle: Open Court. 3rd ed., 1988.

    Google Scholar 

  • Schrödinger, Erwin. 1935. Die gegenwärtige Situation in der Quantenmechanick. I–III. Naturwissenschaften 23: 807–812, 823–828, 844–849; rep. in [Schrödinger GA, III, 484–501].

    Google Scholar 

  • Schrödinger, Erwin. 1936. Probability Relations Between Separated Systems. Proceedings of the Cambridge Philosophical Society 31: 555–563; rep. in [Schrödinger GA, III, 143–165].

    Google Scholar 

  • Schrödinger, Erwin. 1984. Gesammelte Abhandlungen. Wien: Verlag der österreichischen Akademie der Wissenschaften.

    Google Scholar 

  • Schwartz, Matthew D. 2014. Quantum Field Theory and the Standard Model. Cambridge: Cambridge University Press.

    Google Scholar 

  • Shimony, Abner. 1965. Quantum Physics and the Philosophy of Whitehead. In Philosophy in America, ed. Max Black, London: Allen and Unwin; rep. in [Shimony 1993, I, 183–273].

    Google Scholar 

  • Shimony, Abner. 1993. Search for a Naturalistic Point of View. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Sosa, E., and M. Tooley (eds.). 1993. Causation. Oxford: Oxford University Press.

    Google Scholar 

  • Spinoza, Baruch. 1677. Ethica, Amsterdam; in [Spinoza O, II, 41–308].

    Google Scholar 

  • Spinoza, Baruch. 1925. Opera. In ed. C. Gebhardt, vol. 4. Heidelberg, rep. Heidelberg: Carl Winter 1972.

    Google Scholar 

  • Tarozzi, Gino. 1988. Science, Metaphysics and Meaningful Philosophical Principles. Epistemologia 1197–1104.

    Google Scholar 

  • Tarozzi, Gino. 1996. Quantum Measurements and Macroscopical Reality: Epistemological Implications of a Proposed Paradox. Foundations of Physics 26: 907–917.

    Article  ADS  MathSciNet  Google Scholar 

  • ‘T Hooft, Gerard. 2016. The Cellular Automaton Interpretation of Quantum Mechanics. Berlin: Springer.

    Google Scholar 

  • Tryon, Edward P. 1973. Is the Universe a Vacuum Fluctuation? Nature 246: 396–397.

    Article  ADS  Google Scholar 

  • van Fraassen, Bas C. 1989. Laws and Symmetry. Oxford: Clarendon.

    Book  Google Scholar 

  • von Neumann, John. 1932. Mathematische Grundlagen der Quantenmechanik. Berlin: Springer.

    Google Scholar 

  • Wallace, David. 2012. The Emergent Multiverse: Quantum Theory according to the Everett Interpretation. Oxford: Oxford University Press.

    Google Scholar 

  • Weyl, Hermann. 1949. Philosophy of Mathematics and Natural Science. Princeton: Princeton University Press.

    Google Scholar 

  • Wheeler, John A. 1978. The ‘Past’ and the ’Delayed-Choice’ Double-Slit Experiment, in [Marlow 1978, 9–48].

    Google Scholar 

  • Wheeler, J.A., and W. Zurek (eds.). 1983. Quantum Theory and Measurement. Princeton: Princeton University Press.

    Google Scholar 

  • Wootters, W.K., and W.H. Zurek. 1982. A Single Quantum Cannot Be Cloned. Nature 299: 802–803.

    Article  ADS  Google Scholar 

  • Zeilinger, Anton. 1999. A Foundational Principle for Quantum Mechanics. Foundations of Physics 29: 631–643.

    Article  MathSciNet  Google Scholar 

  • Zeilinger, Anton. 2000. Quantum Entangled Bits Step Closer to It. Science 289: 405–406.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Auletta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Auletta, G. (2019). The Main Problems. In: The Quantum Mechanics Conundrum. Springer, Cham. https://doi.org/10.1007/978-3-030-16649-6_2

Download citation

Publish with us

Policies and ethics