Skip to main content

Ontological Ascription and Operations

  • Chapter
  • First Online:
The Quantum Mechanics Conundrum
  • 1012 Accesses

Abstract

In the previous chapter, we have deepened some formal issues developed in Chap. 3. Now, we shall deepen the related conceptual issues. I have stressed that notions like causal constraints and potentiality need to be effective in solving our problems in interpreting QM. In general, I have piecewise proposed a schematic interpretational framework that needs now to be constructively developed, improved and tested. In the first section, a preliminary examination of the concepts of quantum events and quantum features is developed, two notions that are problematic to deal with in a classical framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Misner et al. (1970, p. 71).

  2. 2.

    Geroch (1978, p. 37).

  3. 3.

    On the Copernican revolution I recommend the classical (Kuhn 1957).

  4. 4.

    See Leibniz (1710, Discours Preliminaire, Sect. 65).

  5. 5.

    Misner et al. (1970, p. 6); Geroch (1978, Chap. 1) .

  6. 6.

    https://en.wikipedia.org/wiki/Event_(probability_theory). An extensive treatment of this subject can be found in Leon–Garcia (2008).

  7. 7.

    Rindler (2001, p. 42).

  8. 8.

    D’Ariano and Tosini (2013) .

  9. 9.

    Einstein (1934, pp. 168–69).

  10. 10.

    Reference papers are Hegerfeldt (1974, 1985).

  11. 11.

    As elegantly proved in Malament (1995).

  12. 12.

    Howard (1992).

  13. 13.

    ‘T Hooft (2016, pp. 30–31).

  14. 14.

    Wheeler (1983).

  15. 15.

    Carnap (1928); Margenau (1950, Sect. 4.5).  One has spoken of the “man–made” character of physical (scientific) theories (Rindler 2001, p. 190).

  16. 16.

    On these subject I suggest the following textbooks (Atkins and De Paula 2006; Atkins and Friedman 2005).  I shall come back on these problems.

  17. 17.

    Joos and Zeh (1985).

  18. 18.

    The first serious discussions of randomness are in Poincaré (1907), Borel (1920) .

  19. 19.

    Elitzur (1992).

  20. 20.

    On this distinction see Poincaré (1899).

  21. 21.

    A problem already analysed in such terms in ancient philosophy: (Aristotle 2019, 9, 19a).

  22. 22.

    Letter of June 2, 1674 to Jarig Jelles (Spinoza 1972, IV, p. 240).

  23. 23.

    Deutsch (2011, Chap. 12).

  24. 24.

    “Once the decision is made, it becomes ‘real’ and there is nothing random about it anymore” (Laughlin 2005, p. 44). See also Laughlin (2005, p. 130).

  25. 25.

    A quick introduction to the subject is in Auletta and Wang (2014, Sect. 7.9).

  26. 26.

    Kuhlmann (2013).

  27. 27.

    On this subject and its quantum-mechanical subtleties, see Auletta et al. (2009, Sect. 13.8). I shall come back on these problems.

  28. 28.

    Schrödinger (1935a).

  29. 29.

    Schrödinger (1935b).

  30. 30.

    For a review, see Auletta and Tarozzi (2004b).  See also Auletta (2014a).

  31. 31.

    On the problem of reductionist methodology see Auletta (2012).

  32. 32.

    As pointed out in Auletta and Torcal (2011).

  33. 33.

    See also Margenau (1950, Sect. 15.1).

  34. 34.

    Poincaré (1897).

  35. 35.

    As stressed in Peirce (1885).  See also Auletta (2011, Sects. 1.2.4, 2.2.3).

  36. 36.

    On this problem see also Schlosshauer (2007, Sect. 2.5.3).

  37. 37.

    D’ariano and Yuen (1996).

  38. 38.

    On the more general statistical interpretation of QM see Ballentine (1970).  For historical reconstruction see Jammer (1974, Chap. 10)  and for further references see also Auletta (2000, Sect. 6.5.2).

  39. 39.

    As reported in Heisenberg (1969, Chap. 5):  “vom prinzipiellen Standpunkt aus ist es ganz falsch, eine Theorie nur auf beobachtbare Größen gründen zu wollen. Denn es ist ja in Wirklichkeit genau umgekehrt. Erst die Theorie entscheidet darüber, was man beobachten kann. Sehen Sie, die Beobachtung ist ja im allgemeinen ein sehr komplizierter Prozeß. Der Vorgang, der beobachtet werden soll, ruft irgendwelche Geschehnisse in unserem Meßapparat hervor. Als Folge davon laufen dann in diesem Apparat weitere Vorgänge ab, die schließlich auf Umwegen den sinnlichen Eindruck und die Fixierung des Ergebnisses in unserem Bewußtsein bewirken. Auf diesem ganzen langen Weg vom Vorgang bis zur Fixierung in unserem Bewußtsein müssen wir wissen, wie die Natur funktioniert, müssen wir die Naturgesetze wenigstens praktisch kennen, wenn wir behaupten wollen, daß wir etwas beobachtet haben. Nur die Theorie, das heißt die Kenntnis der Naturgesetze, erlaubt uns also, aus dem sinnlichen Eindruck auf den zugrunde liegenden Vorgang zu schließen. Wenn man behauptet, daß man etwas beobachten kann, so müßte man also eigentlich genauer so sagen: Obwohl wir uns anschicken, neue Naturgesetze zu formulieren, die nicht mit den bisherigen übereinstimmen, vermuten wir doch, daß die bisherigen Naturgesetze auf dem Weg vom zu beobachtenden Vorgang bis zu unserem Bewußtsein so genau funktionieren, daß wir uns auf sie verlassen und daher von Beobachtungen reden dürfen.”

  40. 40.

    Heisenberg (1958, p. 90).

  41. 41.

    ‘T Hooft (2016, p. 33).

  42. 42.

    Born (1949, p. 33).

  43. 43.

    On this subject the interested reader may have a look at Auletta (2011, Sect. 20.6), where also further literature is quoted. I recall here that Peirce clearly considered these two different kinds of association (Peirce 1898, pp. 234–36).

  44. 44.

    Lewontin (2000).

  45. 45.

    See e.g. Dirac (1945).  On this problem see also Bokulich (2008, Sect. 3.2).  The author stresses that Dirac had supported an inverse correspondence principle, according to which QM can lead analogically into new developments in CM.

  46. 46.

    Brown and Porter (2006).  This enlightening paper is also a good conceptual introduction to category theory, of which a lot will be said below. I had only used the term abductive instead of inductive (see the end of Sect. 3.3.3). Among the first scientists to have acknowledged the role of analogy in science, and especially in mathematics, is H. Poincaré (1897). See also Poincaré (1902, pp. 158–59); Poincaré (1905, p. 38).

  47. 47.

    As pointed out in Auletta and Tarozzi (2004b). 

  48. 48.

    See also Auletta and Wang (2014, Sects. 4.8, 5.4–5.6).

  49. 49.

    Auletta and Tarozzi (2004a).  In this paper, due to some misprint, some displaced imaginary units appear in some calculations.

  50. 50.

    Pusey et al. (2012).

  51. 51.

    This can be brought in harmony with the idea that the quantum state is prescriptive (Healey 2017, Sect. 4.5).

  52. 52.

    Aharonov and Bohm (1959).

  53. 53.

    Misner et al. (1970, Sect. 8.3).

  54. 54.

    The reference paper is Ollivier and Zurek (2001).  See also Auletta and Wang (2014, Sect. 11.7).

  55. 55.

    I synthesise in the following the main arguments of Zwolak and Zurek (2013).

  56. 56.

    Bohm (1980, pp. 147–71).

  57. 57.

    These arguments have been synthesised in Auletta and Torcal (2011).  See also Auletta and Wang (2014, Sect. 5.5).

  58. 58.

    Greenberger and Yasin (1988).

  59. 59.

    Greenberger and Yasin (1988).  A similar result can be found in Englert (1996).

  60. 60.

    As pointed out in Maudlin (1994, p. 22).

  61. 61.

    Ma et al. (2013).  I shall come back on this experiment.

  62. 62.

    Suarez (2001).  This possibility was anticipated in Auletta (2000, Sect. 46.4).   See also (Maudlin 1994, p. 23).

  63. 63.

    As pointed out in Bennett and Shor (1998).

  64. 64.

    As stated in Gottesman and Chuang (1999).

  65. 65.

    Stefanov et al. (2002).

  66. 66.

    Wheeler (1990).  See also Verlinde (2011)  for a model, on which I shall come back.

  67. 67.

    Grunbaum (1973, p. 729).

  68. 68.

    The transactional interpretation of QM reaches a similar conclusion about the nature of events (Kastner 2013).

  69. 69.

    Geroch (1978, p. 79).

  70. 70.

    See also Rovelli (2004, pp. 49–50);  Grunbaum (1973, pp. 322–24).

  71. 71.

    Bridgman (1927, p. 75).

  72. 72.

    I summarise here the arguments exposed in Auletta (2011, Sect. 3.3.4).

  73. 73.

    Consider in this context the difficulties with the notion of extended time (Bridgman 1927, pp. 76–77).

  74. 74.

    This argument was presented by the British-Australian philosopher J. Smart (1920–2012) (Smart 1954). See also Lockwood (2005, Chap. 11).

  75. 75.

    Wheeler (1983).

  76. 76.

    Schrodinger (1958, Chap. 3).

  77. 77.

    Bohm (1980, pp. 196–213).

  78. 78.

    Somewhere he also appears to follow the epistemic interpretation (Wheeler 1988).

  79. 79.

    This is the main goal of my book (Auletta 2011).

  80. 80.

    See the summary in Auletta and Wang (2014, Sect. 12.3).

  81. 81.

    Heisenberg (1958, pp. 46–47).

  82. 82.

    D’Ariano et al. (2017, Sects. 2.4 and 5.1).

  83. 83.

    Reference papers are Bennett and Wiesner (1992); Mattle et al. (1996) .  See also Nielsen and Chuang (2000, Sect. 2.3).

  84. 84.

    On this subject see Nielsen and Chuang (2000, Sect. 4.4).

  85. 85.

    See the original study (Wang et al. 1991).  For the remnant of this subsection see Auletta et al. (2009, Sect. 9.5).

  86. 86.

    Scully et al. (1991).

  87. 87.

    In a further experiment, the erasure is provided by one of two entangled photons (Kim et al. 2000).

  88. 88.

    Storey et al. (1994).

  89. 89.

    Englert et al. (1995).  

  90. 90.

    Armstrong (1983, Chap. 6).

  91. 91.

    On this subject see Auletta (2005).

  92. 92.

    Fundamental and now classical textbooks on the subject are Davies (1976); Kraus (1983) .  See also Busch et al. (1995); de Muynck (2002).  Fort a summary, see Auletta et al. (2009, Sect. 9.10); Auletta (2014b).

  93. 93.

    Kraus (1983, p. 10).

  94. 94.

    D’Ariano et al. (2017, Sect. 2.4).

  95. 95.

    D’Ariano et al. (2017, Sects. 2.8.5 and 3.6–3.7).

  96. 96.

    On this subject see Finkelstein (1996).

  97. 97.

    On this helpful formalism see Nielsen and Chuang (2000, pp. 356–73, 386–89);  Auletta et al. (2009, Sect. 14.3).

  98. 98.

    See Lindblad (1983). For derivation of this equation see Auletta et al. (2009, Sect. 14.2). On Master equation and decoherence see Schlosshauer (2007, Chap. 4).

  99. 99.

    Which is again a superoperator, a formal aspect that does not need to be considered here.

  100. 100.

    I follow here (Nielsen and Chuang 1997, Sect. 8.3.5; Auletta et al. 2009, Sect. 14.3).

  101. 101.

    I follow here   (Martens and de Muynck 1990; de Muynck et al. 1991). See also Auletta et al. (2009, Sect. 9.10.3).

  102. 102.

    See Busch et al. (1995, Sect. I.1.2).

  103. 103.

    D’Ariano et al. (2017, Sect. 2.12).

  104. 104.

    D’Ariano et al. (2017, Sect. 7.10).

  105. 105.

    It may be noted that in Ludwig (1983, I, p. 7) preparation–registration procedures are part of the fundamental (operational–ontological) domain of QM but not the assigned properties. For this reason, he stresses that such selection procedures or operations should not be mixed up with formal tools like density matrices or projectors (Ludwig 1983, I, Chap. 3).

  106. 106.

    Recent attempts at using the so-called weak measurement for showing a supposed dissociation between system and properties (Denkmayr et al. 2014) have subsequently been explained in terms of ordinary quantum interference effects (Corrêa et al. 2015).

  107. 107.

    See also Rovelli (2005).

  108. 108.

    Ludwig (1983, I, p. 42).

  109. 109.

    Ludwig (1983). See also Kraus (1983), Busch et al. (1995).

  110. 110.

    Ludwig (1983, I, pp. 31, 43–47).

  111. 111.

    It might be noted that already Kraus, although still maintaining the notion of equivalence class, prefers to speak of equivalence classes of instruments and not of operations (Kraus 1983, p. 6) .

  112. 112.

    See Davies (1976, pp. 17–18) . For what follows see also Auletta et al. (2009, Sect. 9.10).

  113. 113.

    See Kraus (1983) .

  114. 114.

    Properly speaking, also effect operators are superoperator, but for them I follow the general convention.

  115. 115.

    See Royer (1989).

  116. 116.

    See Kraus (1983, p. 42) .

  117. 117.

    D’Ariano et al. (2017, Sect. 7.9).

  118. 118.

    D’Ariano et al. (2017, Sect. 8.12).

  119. 119.

    Coecke and Lal (2012).

  120. 120.

    As pointed out in Auletta and Torcal (2011).

  121. 121.

    Rovelli (1996, 2005).  See also Epperson and Zafiris (2013).

  122. 122.

    For instance by Peirce (1903, 1.25).

  123. 123.

    For reasons that are partly different from my approach, the so-called transactional interpretation of QM has stressed the ‘reality’ of possibility (Kastner 2013, Chap. 4).

  124. 124.

    von Bertalanffy (1950).  See also Auletta (2011, Sect. 2.4.4). Science as knowledge of systems and in particular of relations is the object of Carnap (1928).

References

  • Aharonov, Y., and D. Bohm. 1959. Significance of Electromagnetic Potentials in the Quantum Theory. Physical Review 115: 485–91; Report in [Shapere and Wilczek 1989, 104–110].

    Article  ADS  MathSciNet  Google Scholar 

  • Aristotle. 2019. Liber de Interpretatione. In [Aristotle 1949]; Also in [Aristotle (1831), 16–24].

    Google Scholar 

  • Aristotle. 1949. Categoriae et Liber de Interpretatione (ed. L. Minio-Paluello). Oxford.

    Google Scholar 

  • Aristotle. 1831. Opera (ed. Immanuel Bekker). Berlin: G. Reimerum.

    Google Scholar 

  • Armstrong, D.M. 1983. What is a Law of Nature. Cambridge: Cambridge University Press.

    Google Scholar 

  • Atkins, P.W., and J. De Paula. 2006. Physical Chemistry, 2nd ed. Oxford: Oxford University Press.

    Google Scholar 

  • Atkins, P.W., and R. Friedman. 2005. Molecular Quantum Mechanics, 4th ed. Oxford: Oxford University Press.

    Google Scholar 

  • Auletta, G., and (in collaboration with I. Colagè, P. D’ambrosio, and L. Torcal). 2011. Integrated Cognitive Strategies in a Changing World. Rome: G and B Press.

    Google Scholar 

  • Auletta, G., and G. Tarozzi. 2004a. Wavelike Correlations versus Path Detection: Another Form of Complementarity. Foundations of Physics Letters 17: 889–95.

    Article  ADS  MathSciNet  Google Scholar 

  • Auletta, G., and G. Tarozzi. 2004b. On the Physical Reality of Quantum Waves. Foundations of Physics 34: 1675–94.

    Article  ADS  MathSciNet  Google Scholar 

  • Auletta, G., and L. Torcal. 2011. From Wave–Particle to Features–Event Complementarity. International Journal of Theoretical Physics 50: 3654–3668. https://doi.org/10.1007/s10773-011-0833-8.

    Article  ADS  MathSciNet  Google Scholar 

  • Auletta, G., and S.-Y. Wang. 2014. Quantum Mechanics for Thinkers. Singapore: Pan Stanford Publication. https://doi.org/10.4032/9789814411721.

  • Auletta, G., M. Fortunato and G. Parisi. 2009. Quantum Mechanics. Cambridge: Cambridge University Press; Revised paperback ed. 2013.

    Google Scholar 

  • Auletta, G. 2000. Foundations and Interpretation of Quantum Mechanics: In the Light of a Critical-Historical Analysis of the Problems and of a Synthesis of the Results. Singapore: World Scientific; Revised ed. 2001.

    Google Scholar 

  • Auletta, G. 2005. Quantum Information and Inferential Reasoning. Foundations of Physics 35: 155–69.

    Article  ADS  MathSciNet  Google Scholar 

  • Auletta, G. 2011. Cognitive Biology: Dealing with Information from Bacteria to Minds. Oxford: Oxford University Press.

    Google Scholar 

  • Auletta, G. 2012. Causation Upside Down? Revista Portuguesa de Filosofia 68 (1–2): 9–32.

    Article  Google Scholar 

  • Auletta, G. 2014a. The Quest for Reality. in [Fano 2017, 65–84].

    Google Scholar 

  • Auletta, G. 2014b. Protective and State Measurement: A Review. in [Gao 2014, 39–62].

    Google Scholar 

  • Ballentine, L.E. 1970. The Statistical Interpretation of Quantum Mechanics. Review of Modern Physics 42: 358–81.

    Article  ADS  Google Scholar 

  • Bennett, C.H., and P.W. Shor. 1998. Quantum Information Theory. IEEE Transactions on Information Theory 44: 2724–42.

    Article  MathSciNet  Google Scholar 

  • Bennett, C.H., and S.J. Wiesner. 1992. Communication via One- and Two-Particle Operators on EPR States. Physical Review Letters 69: 2881–84.

    Article  ADS  MathSciNet  Google Scholar 

  • Bohm, D. 1980. Wholeness and the Implicate Order. London: Routledge.

    Google Scholar 

  • Bokulich, A. 2008. Reexamining the Quantum-Classical Relation: Beyond Reductionism and Pluralism. Cambridge: Cambridge University Press.

    Google Scholar 

  • Borel, E. 1920. Le hasard. Paris: Alcan.

    Google Scholar 

  • Born, M. 1949. Natural Philosophy of Chance and Cause. Oxford: Clarendon.

    Google Scholar 

  • Bridgman, P.W. 1927. The Logic Of Modern Physics. New York: McMillan.

    Google Scholar 

  • Brown, R., and T. Porter. 2006. Category Theory: An Abstract Setting for Analogy and Comparison. In What is Category Theory?, ed. G. Sica, 257–74. Milano: Polimetrica.

    Google Scholar 

  • Busch, P., M. Grabowski, and P.J. Lahti. 1995. Operational Quantum Physics. Berlin: Springer.

    Book  Google Scholar 

  • Carnap, R. 1928. Der logische Aufbau der Welt. Meiner: Hamburg.

    Google Scholar 

  • Coecke, B., and R. Lal. 2012. Categorial Quantum Mechanics Meets the Pavia Principles: Towards a Representation Theorem for CQM Constructions. in [Jacobs et al. 2012, 67–78].

    Google Scholar 

  • Corrêa, R., M.F. Santos, C.H. Monken and P.L. Saldanha. 2015. Quantum Cheshire Cat’ as Simple Quantum Interference. New Journal of Physics 17: 053042. https://doi.org/10.1088/1367-2630/17/5/053042.

    Article  ADS  MathSciNet  Google Scholar 

  • D’Ariano, G.M., and A. Tosini. 2013. Emergence of Space–Time from Topologically Homogeneous Causal Networks. Studies in History and Philosophy of Modern Physics 44:294–99. https://doi.org/10.1016/j.shpsb.2013.04.003

    Article  ADS  MathSciNet  Google Scholar 

  • D’Ariano, G.M., and H.-P. Yuen. 1996. Impossibility of Measuring the Wave Function of a Single Quantum System. Physical Review Letters 76: 2832–2835.

    Article  ADS  Google Scholar 

  • D’Ariano, M., G. Chiribella, and P. Perinotti. 2017. Quantum Theory from First Principles: An informational approach. Cambridge: Cambridge University Press.

    Google Scholar 

  • Davies, E.B. 1976. Quantum Theory of Open Systems. London: Academic.

    Google Scholar 

  • de Muynck, W.M. 2002. Foundations of Quantum Mechanics, an Empiricist Approach. New York: Kluwer Academic Publishers.

    Google Scholar 

  • de Muynck, W.M., W.W. Stoffels, and H. Martens. 1991. Joint Measurement of Interference and Path Observables in Optics and Neutron Interferometry. Physica B 175: 127–32.

    Google Scholar 

  • Denkmayr, T., H. Geppert S. Sponar, H. Lemmel, A. Matzkin, J. Tollaksen and Y. Hasegawa. 2014. Observation of a Quantum Cheshire Cat in a Matter–Wave Interferometer Experiment. Nature Communications 5: 4492. https://doi.org/10.1038/ncomms5492.

  • Deutsch, D. 2011. The Beginning of Infinity: Explanations that Transform the World. London: Penguin Books.

    Google Scholar 

  • Dirac, P.A.M. 1945. On the Analogy between Classical and Quantum Mechanics. Review of Modern Physics 17: 195–99.

    Article  ADS  MathSciNet  Google Scholar 

  • Eddington, A.S. 1934. On the Method of Theoretical Physics. Philosophy of Science 1:163–69; Eng. Tr. of [Eddington (1930)].

    Google Scholar 

  • Elitzur, A.C. 1992. Locality and Indeterminism Preserve the Second Law. Physics Letters A167: 335–40. https://doi.org/10.1016/0375-9601(92)90268-q

    Article  ADS  MathSciNet  Google Scholar 

  • Elitzur, A.C., S. Dolev, and N. Kolenda (eds.). 2005. Quo Vadis Quantum Mechanics?. Berlin: Springer.

    MATH  Google Scholar 

  • Englert, B.-G., M.O. Scully, and H. Walther. 1995. Complementarity and Uncertainty. Nature 375: 367–68.

    Article  ADS  Google Scholar 

  • Englert, B.-G. 1996. Fringe Visibility and Which-Way Information: An Inequality. Physical Review Letters 77: 2154–57.

    Article  ADS  Google Scholar 

  • Epperson, M., and E. Zafiris. 2013. Foundations of Relational Realism: A Topological Approach to Quantum Mechanics and the Philosophy of Nature. Lexington Books.

    Google Scholar 

  • Finkelstein, D.R. 1996. Quantum Relativity. Berlin: Springer.

    Google Scholar 

  • Fano, Vincenzo (ed.). 2014. Gino Tarozzi Philosopher of Physics: Studies in the Philosophy of Entanglement in his 60th Birthday, Milano. Franco: Angeli.

    Google Scholar 

  • Geroch, R. 1978. General Relativity from A to B. Chicago: University of Chicago Press.

    Google Scholar 

  • Gottesman, D., and I.L. Chuang. 1999. Quantum Teleportation is a Universal Computational Primitive. Nature 402: 390–93. https://doi.org/10.1038/46503.

    Article  ADS  Google Scholar 

  • Greenberger, D.M., and A. Yasin. 1988. Simultaneous Wave and Particle Knowledge in a Neutron Interferometer. Physics Letters 128A: 391–94.

    Article  ADS  Google Scholar 

  • Grünbaum, A. 1973. Philosophical Problems of Space and Time, 2nd ed 1974. Dordrecht: Reidel.

    Google Scholar 

  • Gao, Shan (ed.). 2014. Protective Measurement and Quantum Reality. Cambridge: Cambridge University Press.

    Google Scholar 

  • Healey, R. 2017. The Quantum Revolution in Philosophy. Oxford: Oxford University Press.

    Google Scholar 

  • Hegerfeldt, G.C. 1974. Remarks on Causality and Particle Localization. Physical Review D 10: 3320–21.

    Article  ADS  Google Scholar 

  • Hegerfeldt, G.C. 1985. Violation of Causality in Relativistic Quantum Theory? Physical Review Letters 54: 2395–98.

    Article  ADS  MathSciNet  Google Scholar 

  • Heisenberg, W. 1958. Physics and Philosophy. New York: Harper.

    Google Scholar 

  • Heisenberg, W. 1969. Der Teil und Das Ganze. München: Piper.

    Google Scholar 

  • Howard, D. 1992. Einstein and Eindeutigkeit: A Neglected Theme in the Philosophical Background to General Relativity. In Studies in the History of General Relativity, ed. J. Eisenstaedt, and A.J. Kox. Bioston: Birkhäuser.

    Google Scholar 

  • Jammer, M. 1974. The Philosophy of Quantum Mechanics. The Interpretation of Quantum Mechanics in Historical Perspective. New York: Wiley.

    Google Scholar 

  • Joos, E., and H.D. Zeh. 1985. The Emergence of Classical Properties Through Interaction with the Environment. Zeitschrift für Physik B59: 223–43.

    Article  ADS  Google Scholar 

  • Jacobs, B., Selinger, P., and Spitters, B. (eds.). 2012. Proceedings 8th International Workshop on Quantum Physics and Logic (2011), http://eptcs.web.cse.unsw.edu.au/content.cgi?QPL2011.

  • Kastner, R.E. 2013. The Transactional Interpretation of Quantum Mechanics: The Reality of Possibility. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kim, Y.-H., R. Yu, S.P. Kulik, Y.H. Shih, and M.O. Scully. 2000. A Delayed Choice Quantum Eraser. Physical Review Letters 84: 1–5.

    Article  ADS  Google Scholar 

  • Kraus, K. 1983. States, Effects and Operations. Berlin: Springer.

    Google Scholar 

  • Kuhlmann, M. 2013. What is Real? Scientific American 8: 32–39.

    Google Scholar 

  • Kuhn, T.S. 1957. The Copernican Revolution: Planetary Astronomy in the Development of Western Thought. Cambridge: Harvard University Press.

    Google Scholar 

  • Laughlin, R.B. 2005. A Different Universe (Reinventing Physics from the Bottom Down). New York: Basic Books.

    Google Scholar 

  • Leibniz, G.W. 1710. Essais de Théodicée; in [Leibniz (1978), VI, 21–436].

    Google Scholar 

  • Leibniz, P.S. 1978. Philosophische Schriften (Ed. Gerhardt), Halle, 1875. rep. Olms: Hildesheim.

    Google Scholar 

  • Leon-Garcia, A. 2008. Probability, Statistics, and Random Processes for Electrical Engineering, 3rd ed. Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Lewontin, R.C. 2000. The Triple Helix: Gene, Organism, and Environment. Cambridge: Harvard University Press.

    Google Scholar 

  • Lindblad, G. 1983. Non-Equilibrium Entropy and Irreversibility. Dordrecht: Reidel.

    Google Scholar 

  • Lockwood, M. 2005. The Labyrinth of Time: Introducing the Universe. Oxford: Oxford University Press.

    Google Scholar 

  • Ludwig, G. 1983. Foundations of Quantum Mechanics. Berlin: Springer; Eng. Tr. of [Ludwig 1954].

    Google Scholar 

  • Ma, X.-S., J. Kofler, A. Qarry, N. Tetik, T. Scheidl, R. Ursin, S. Ramelow, T. Herbst, L. Ratschbacher, A. Fedrizzi, T. Jennewein and A. Zeilinger. 2013. Quantum Erasure with Causally Disconnected Choice. Proceedings of the National Academy of Sciences USA 110: 1221–26. https://doi.org/10.1073/pnas.1213201110.

    Article  ADS  Google Scholar 

  • Malament, D.B. 1995. In Defense of Dogma: Why There Cannot Be a Relativistic Quantum Mechanics of (Localizable) Particles (Clifton (1995), 1–10).

    Google Scholar 

  • Margenau, H. 1950. The Nature of Physical Reality: A Philosophy of Modern Physics, 1977. New York: McGraw-Hill; Woodbridge. Conn.: Ox Bow Press.

    Google Scholar 

  • Martens, H., and W.M. De Muynck. 1990. Nonideal Quantum Measurements. Foundations of Physics 20: 255–81.

    Article  ADS  MathSciNet  Google Scholar 

  • Mattle, K., H. Weinfurter, P. Kwiat, and A. Zeilinger. 1996. Dense Coding in Experimental Quantum Communication. Physical Review Letters 76: 4656–59.

    Article  ADS  Google Scholar 

  • Maudlin, T. 1994. Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics. Blackwell.

    Google Scholar 

  • Misner, C.W., K.S. Thorne, and J.A. Wheeler. 1970. Gravitation. San Francisco: Freeman and Co.

    Google Scholar 

  • Nielsen, M.A., and I.L. Chuang. 1997. Programmable Quantum Gate Arrays. Physical Review Letters 79: 321–24. https://doi.org/10.1103/PhysRevLett.79.321

    Article  ADS  MathSciNet  Google Scholar 

  • Nielsen, M.A., and I.L. Chuang. 2000. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ollivier, H., and W.H. Zurek. 2001. Quantum Discord: A Measure of the Quantumness of Correlations. Physics Review Letters 88: 017901.

    Google Scholar 

  • Peirce, C.S. 1885. An American Plato: Review of Royce’s. Religious Aspects of Philosophy. in [Peirce 1982, V, 221–34].

    Google Scholar 

  • Peirce, W. 1982. Writings, Bloomington, vol. I. Indiana University Press.

    Google Scholar 

  • Peirce, C.S. 1898. Reasoning and the Logic of Things: The Cambridge Conferences Lectures of 1898. Manuscript; ed. K. L. Ketner. Cambridge: Harvard University Press.

    Google Scholar 

  • Peirce, C.S. 1903. Lessons from the History of Philosophy—Nominalism. in [Peirce 1958, 1.15–26].

    Google Scholar 

  • Peirce, C.P. 1958. The Collected Papers, vol. I–VI (eds. Charles Hartshorne and Paul Weiss). Cambridge: Harvard University Press. 1931–1935; vol. VII–VIII (ed. Arthur W. Burks), Cambridge: Harvard University Press.

    Google Scholar 

  • Penrose, R. 2004. The Road to Reality: A Complete Guide to the Laws of the Universe. J. Cape: London.

    Google Scholar 

  • Poincaré, H. 1899. Reflexions sur le calcul des probabilités. Revue Générale des Sciences Pures et Appliqués 10: 262–69; Report in [Poincaré (1991), 114–34].

    Google Scholar 

  • Poincaré, H. 1897. Le rapport de l’analyse et de la physique mathématique. Acta Mathematica 21: 331–41; Report in [Poincaré 1991, 17–30].

    Google Scholar 

  • Poincaré, H. 1902. La science et l’hypothèse. Paris: Flammarion.

    Google Scholar 

  • Poincaré, H. 1905. La Valeur de la science. Paris: Flammarion.

    Google Scholar 

  • Poincaré, H. 1907. Le hasard. Revue du mois 3:257–76; Report in [Poincaré (1991), 135–56].

    Google Scholar 

  • Poincaré, H. 1991. L’analyse et la recherche. Paris: Hermann.

    Google Scholar 

  • Pusey, M.F., J. Barrett and T. Rudolph. 2012. On the Reality of the Quantum State. Nature Physics 8: 476–79. https://doi.org/10.1038/nphys2309.

    Article  ADS  Google Scholar 

  • Rindler, W. 2001. Relativity: Special, General, and Cosmological. Oxford: Oxford University Press.

    Google Scholar 

  • Rovelli, C. 1996. Relational Quantum Mechanics. International Journal of Theoretical Physics 35: 1637–78. https://doi.org/10.1007/bf02302261.

    Article  ADS  MathSciNet  Google Scholar 

  • Rovelli, C. 2004. Quantum Gravity. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rovelli, C. 2005. Relational Quantum Mechanics. in [Elitzur et al. 2005, 113–20].

    Google Scholar 

  • Royer, A. 1989. Measurement of Quantum States and the Wigner Function. Foundations of Physics 19: 3–30.

    Article  ADS  MathSciNet  Google Scholar 

  • Shapere, A., and F. Wilczek (eds.). 1989. Geometric Phases in Physics. Singapore: World Scientic.

    Google Scholar 

  • Schlosshauer, M. 2007. Decoherence and the Quantum-to-Classical Transition. Berlin: Springer.

    Google Scholar 

  • Schrödinger, E. 1935a. Die gegenwärtige Situation in der Quantenmechanick. I–III. Naturwissenschaften 23: 807–12, 823–28, 844–49; Report in [Schrödinger 1984, III, 484–501].

    Google Scholar 

  • Schrödinger, E. 1935b. Discussion of Probability Relations Between Separated Systems. Proceedings of the Cambridge Philosophical Society 32: 446–52; Report in [Schrödinger 1984, I, 433–39].

    Google Scholar 

  • Schrödinger, E. 1958. Mind and Matter. Cambridge: Cambridge University Press; Report in [Schrodinger 1992, 91–164].

    Google Scholar 

  • Schrödinger, E. 1984. Gesammelte Abhandlungen. Wien: Verlag der österreichischen Akademie der Wissenschaften.

    Google Scholar 

  • Schrödinger, E. 1992. What is Life? with Mind and Matter and Autobiographical Sketches. Cambridge: Cambridge University Press (enlarged ed. of [?]).

    Google Scholar 

  • Scully, M.O., B.-G. Englert, and H. Walther. 1991. Quantum Optical Tests of Complementarity. Nature 351: 111–16.

    Article  ADS  Google Scholar 

  • Smart, J.J.C. 1954. The Temporal Asymmetry of the World. Analysis 14: 79–83.

    Article  Google Scholar 

  • Spinoza, B. 1972. Opera (Ed. C. Gebhardt), vol. 4. Heidelberg; Report Heidelberg, Carl Winter, 1972.

    Google Scholar 

  • Stefanov, A., H. Zbinden, N. Gisin, and A. Suarez. 2002. Quantum Correlations with Spacelike Separated Beam Splitters in Motion: Experimental Test of Multisimultaneity. Physical Review Letters 88: 120404.

    Google Scholar 

  • Storey, E.P., S.M. Tan, M.J. Collett, and D.F. Walls. 1994. Path Detection and the Uncertainty Principle. Nature 367: 626–28.

    Article  ADS  Google Scholar 

  • Suarez, A. 2001. Is There a Real Time Ordering behind the Nonlocal Correlations?. arXiv:0110124v1.

  • ‘T Hooft, G., 2016. The Cellular Automaton Interpretation of Quantum Mechanics. Berlin: Springer.

    Google Scholar 

  • Verlinde, E. 2011. On the Origin of Gravity and the Laws of Newton. arXiv: 1001.0785v1.

  • von Bertalanffy, L. 1950. An Outline of General System Theory. British Journal of the Philosophy of Science 1: 139–64; Report in [von Bertalanffy 1969, 54–88].

    Google Scholar 

  • von Bertalanffy, L. 1969. General System Theory: Foundations, Development, Applications. New York: G. Braziller.

    Google Scholar 

  • Wang, L.J., X.Y. Zou, and L. Mandel. 1991. Induced Coherence Without Induced Emission. Physical Review A44: 4614–22.

    Article  ADS  Google Scholar 

  • Wheeler, J.A. 1983. Law Without Law. in [Wheeler and Zurek (1983), 182–213].

    Google Scholar 

  • Wheeler, J.A. 1988. World as System Self–Synthesized by Quantum Networking. IBM Journal of Research and Development 32: 4–15. https://doi.org/10.1147/rd.321.0004.

    Article  Google Scholar 

  • Wheeler, J.A. 1990. Information, Physics, Quantum: The search for Links. in [Zurek 1990, 3–28].

    Google Scholar 

  • Wheeler, J.A., and W. Zurek (eds.). 1983. Quantum Theory and Measurement. Princeton: Princeton University Press.

    Google Scholar 

  • Zwolak, M., and W.H. Zurek. 2013. Complementarity of Quantum Discord and Classically Accessible Information. Scientific Reports 3: 1729. https://doi.org/10.1038/srep01729.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Auletta .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Auletta, G. (2019). Ontological Ascription and Operations. In: The Quantum Mechanics Conundrum. Springer, Cham. https://doi.org/10.1007/978-3-030-16649-6_5

Download citation

Publish with us

Policies and ethics