Skip to main content

Preclinical Models in Mesothelioma

  • Chapter
  • First Online:
Mesothelioma

Abstract

Malignant mesothelioma is a rare and aggressive cancer with a poor prognosis. Clinical studies are challenging, so preclinical models are needed to improve our knowledge of the disease so as to develop new therapeutic options. Different in vitro and in vivo models are available. Primary and immortalized cell lines are useful to study genomic alterations, to identify possible biomarkers, and to screen new drugs, but they do not reproduce the tumor microenvironment. 3D cultures mimic some in vivo features better but still miss the complex links between tumor cells and host stroma.

Animal models, at least partly, address this issue. Asbestos-induced models are used to investigate the pathogenesis of malignant mesothelioma and unravel the role of different genes or pathways in tumor development and progression. Transplantable models, being more reproducible, are useful for pharmacological studies. The use of different preclinical models to confirm experimental data is strongly recommended to overcome their intrinsic limitations, possibly increasing clinical predictivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zalcman G, Mazieres J, Margery J, Greillier L, Audigier-Valette C, Moro-Sibilot D, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet. 2016;387:1405–14.

    Article  CAS  Google Scholar 

  2. McCambridge AJ, Napolitano A, Mansfield AS, Fennell DA, Sekido Y, Nowak AK, et al. Progress in the management of malignant pleural mesothelioma in 2017. J Thorac Oncol. 2018;13:606–23.

    Article  Google Scholar 

  3. Singh A, Pruett N, Hoang CD. In vitro experimental models of mesothelioma revisited. Transl Lung Cancer Res. 2017;6:248–58.

    Article  CAS  Google Scholar 

  4. Robinson C, Solin JN, Lee YG, Lake RA, Lesterhuis WJ. Mouse models of mesothelioma: strengths, limitations and clinical translation. Lung Cancer Manag. 2014;3:397–410.

    Article  CAS  Google Scholar 

  5. Kakiuchi T, Takahara T, Kasugai Y, Arita K, Yoshida N, Karube K, et al. Modeling mesothelioma utilizing human mesothelial cells reveals involvement of phospholipase-C beta 4 in YAP-active mesothelioma cell proliferation. Carcinogenesis. 2016;37:1098–109.

    Article  CAS  Google Scholar 

  6. Rintoul RC, Rassl DM, Gittins J, Marciniak SJ. MesobanK UK: an international mesothelioma bioresource. Thorax. 2016;71:380–2.

    Article  Google Scholar 

  7. Oehl K, Kresoja-Rakic J, Opitz I, Vrugt B, Weder W, Stahel R, et al. Live-cell mesothelioma biobank to explore mechanisms of tumor progression. Front Oncol. 2018;8:40.

    Article  Google Scholar 

  8. Ke Y, Reddel RR, Gerwin BI, Reddel HK, Somers AN, McMenamin MG, et al. Establishment of a human in vitro mesothelial cell model system for investigating mechanisms of asbestos-induced mesothelioma. Am J Pathol. 1989;134:979–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Connell ND, Rheinwald JG. Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell. 1983;34:245–53.

    Article  CAS  Google Scholar 

  10. Sherwood AL, Mutsaers SE, Peeva VK, Robinson C, DeSilva CJ, Swanson NR, et al. Spontaneously immortalized mouse mesothelial cells display characteristics of malignant transformation. Cell Prolif. 2008;41:894–908.

    Article  CAS  Google Scholar 

  11. Davis JM, Bolton RE, Miller BG, Niven K. Mesothelioma dose response following intraperitoneal injection of mineral fibres. Int J Exp Pathol. 1991;72:263–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kellerman LC, Valeyrie L, Fernandez N, Opolon P, Sabourin J-C, Maubec E, et al. Regression of AK7 malignant mesothelioma established in immunocompetent mice following intratumoral gene transfer of interferon gamma. Cancer Gene Ther. 2003;10:481–90.

    Article  Google Scholar 

  13. Mezzapelle R, Rrapaj E, Gatti E, Ceriotti C, Marchis FD, Preti A, et al. Human malignant mesothelioma is recapitulated in immunocompetent BALB/c mice injected with murine AB cells. Sci Rep. 2016;6:22850.

    Article  CAS  Google Scholar 

  14. Robinson C, van Bruggen I, Segal A, Dunham M, Sherwood A, Koentgen F, et al. A novel SV40 TAg transgenic model of asbestos-induced mesothelioma: malignant transformation is dose dependent. Cancer Res. 2006;66:10786–94.

    Article  CAS  Google Scholar 

  15. Blum W, Pecze L, Felley-Bosco E, Worthmüller-Rodriguez J, Wu L, Vrugt B, et al. Establishment of immortalized murine mesothelial cells and a novel mesothelioma cell line. In Vitro Cell Dev Biol Anim. 2015;51:714–21.

    Article  CAS  Google Scholar 

  16. Sneddon S, Patch A-M, Dick IM, Kazakoff S, Pearson JV, Waddell N, et al. Whole exome sequencing of an asbestos-induced wild-type murine model of malignant mesothelioma. BMC Cancer. 2017;17:396.

    Article  Google Scholar 

  17. Mazzocchi AR, Rajan SAP, Votanopoulos KI, Hall AR, Skardal A. In vitro patient-derived 3D mesothelioma tumor organoids facilitate patient-centric therapeutic screening. Sci Rep. 2018;8:2886.

    Article  Google Scholar 

  18. Kim K-U, Wilson SM, Abayasiriwardana KS, Collins R, Fjellbirkeland L, Xu Z, et al. A novel in vitro model of human mesothelioma for studying tumor biology and apoptotic resistance. Am J Respir Cell Mol Biol. 2005;33:541–8.

    Article  CAS  Google Scholar 

  19. Wilson SM, Barbone D, Yang T-M, Jablons DM, Bueno R, Sugarbaker DJ, et al. mTOR mediates survival signals in malignant mesothelioma grown as tumor fragment spheroids. Am J Respir Cell Mol Biol. 2008;39:576–83.

    Article  CAS  Google Scholar 

  20. Kim H, Phung Y, Ho M. Changes in global gene expression associated with 3D structure of tumors: an ex vivo matrix-free mesothelioma spheroid model. PLoS One. 2012;7:e39556.

    Article  CAS  Google Scholar 

  21. Huh D, Hamilton GA, Ingber DE. From three-dimensional cell culture to organs-on-chips. Trends Cell Biol. 2011;21:745–54.

    Article  CAS  Google Scholar 

  22. Russell WMS, Burch RL. The principles of humane experimental technique. London: Methuen; 1959.

    Google Scholar 

  23. Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med. 1960;17:260–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Gilson JC. Health hazards of asbestos. Recent studies on its biological effects. Trans Soc Occup Med. 1966;16:62–74.

    Article  CAS  Google Scholar 

  25. Wagner JC, Berry G, Skidmore JW, Timbrell V. The effects of the inhalation of asbestos in rats. Br J Cancer. 1974;29:252–69.

    Article  CAS  Google Scholar 

  26. Gross P, de Treville RTP, Tolker EB, Kaschak M, Babyak MA. Experimental asbestosis. The development of lung cancer in rats with pulmonary deposits of chrysotile asbestos dust. Arch Environ Health. 1967;15:343–55.

    Article  CAS  Google Scholar 

  27. Gross P, de Treville RTP. Experimental asbestosis. Arch Environ Health Int J. 1967;15:638–49.

    Article  CAS  Google Scholar 

  28. Wagner JC, Berry G. Mesotheliomas in rats following inoculation with asbestos. Br J Cancer. 1969;23:567–81.

    Article  CAS  Google Scholar 

  29. Whitaker D, Shilkin KB, Walters MN. Cytologic and tissue culture characteristics of asbestos-induced mesothelioma in rats. Acta Cytol. 1984;28:185–9.

    CAS  PubMed  Google Scholar 

  30. Lee Shin M, Firminger HI. Acute and chronic effects of intraperitoneal injection of two types of asbestos in rats with a study of the histopathogenesis and ultrastructure of resulting mesotheliomas. Am J Pathol. 1973;70:291–314.

    PubMed Central  Google Scholar 

  31. Craighead JE, Akley NJ, Gould LB, Libbus BL. Characteristics of tumors and tumor cells cultured from experimental asbestos-induced mesotheliomas in rats. Am J Pathol. 1987;129:448–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohr U, Pott F, Vonnahme FJ. Morphological aspects of mesotheliomas after intratracheal instillations of fibrous dusts in Syrian golden hamsters. Exp Pathol. 1984;26:179–83.

    Article  CAS  Google Scholar 

  33. Wagner JC, Griffiths DM, Hill RJ. The effect of fibre size on the in vivo activity of UICC crocidolite. Br J Cancer. 1984;49:453–8.

    Article  CAS  Google Scholar 

  34. Davis JM, Addison J, Bolton RE, Donaldson K, Jones AD, Smith T. The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br J Exp Pathol. 1986;67:415–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Miller BG, Searl A, Davis JM, Donaldson K, Cullen RT, Bolton RE, et al. Influence of fibre length, dissolution and biopersistence on the production of mesothelioma in the rat peritoneal cavity. Ann Occup Hyg. 1999;43:155–66.

    Article  CAS  Google Scholar 

  36. Minardi F, Maltoni C. Results of recent experimental research on the carcinogenicity of natural and modified asbestos. Ann N Y Acad Sci. 1988;534:754–61.

    Article  CAS  Google Scholar 

  37. Suzuki Y, Kohyama N. Malignant mesothelioma induced by asbestos and zeolite in the mouse peritoneal cavity. Environ Res. 1984;35:277–92.

    Article  CAS  Google Scholar 

  38. Davis MR, Manning LS, Whitaker D, Garlepp MJ, Robinson BW. Establishment of a murine model of malignant mesothelioma. Int J Cancer. 1992;52:881–6.

    Article  CAS  Google Scholar 

  39. Chahinian AP, Beranek JT, Suzuki Y, Bekesi JG, Wisniewski L, Selikoff IJ, et al. Transplantation of human malignant mesothelioma into nude mice. Cancer Res. 1980;40:181–5.

    CAS  PubMed  Google Scholar 

  40. Manning LS, Whitaker D, Murch AR, Garlepp MJ, Davis MR, Musk AW, et al. Establishment and characterization of five human malignant mesothelioma cell lines derived from pleural effusions. Int J Cancer. 1991;47:285–90.

    Article  CAS  Google Scholar 

  41. Griffin TW, Stocl M, Collins J, Fernandes J, Maher VE. Combined antitumor therapy with the chemotherapeutic drug doxorubicin and an anti-transferrin receptor immunotoxin: in vitro and in vivo studies. J Immunother. 1992;11:12–8.

    Article  CAS  Google Scholar 

  42. Cook JW, Sterman DH, Singhal S, Smythe WR, Kaiser LR. Suramin inhibits the growth of malignant mesothelioma in vitro, and in vivo, in murine flank and intraperitoneal models. Lung Cancer. 2003;42:263–74.

    Article  Google Scholar 

  43. Littlejohn JE, Cao X, Miller SD, Ozvaran MK, Jupiter D, Zhang L, et al. Bcl-xL antisense oligonucleotide and cisplatin combination therapy extends survival in SCID mice with established mesothelioma xenografts. Int J Cancer. 2008;123:202–8.

    Article  CAS  Google Scholar 

  44. Colt HG, Astoul P, Wang X, Yi ES, Boutin C, Hoffman RM. Clinical course of human epithelial-type malignant pleural mesothelioma replicated in an orthotopic-transplant nude mouse model. Anticancer Res. 1996;16:633–9.

    CAS  PubMed  Google Scholar 

  45. Astoul P, Wang X, Colt H, Boutin C, Hoffman R. A patient-like human malignant pleural mesothelioma nude-mouse model. Oncol Rep. 1996;3:483–7.

    CAS  PubMed  Google Scholar 

  46. Pimpec-Barthes FL, Bernard I, Alsamad IA, Renier A, Kheuang L, Fleury-Feith J, et al. Pleuro-pulmonary tumours detected by clinical and chest X-ray analyses in rats transplanted with mesothelioma cells. Br J Cancer. 1999;81:1344–50.

    Article  Google Scholar 

  47. Martarelli D, Catalano A, Procopio A, Orecchia S, Libener R, Santoni G. Characterization of human malignant mesothelioma cell lines orthotopically implanted in the pleural cavity of immunodeficient mice for their ability to grow and form metastasis. BMC Cancer. 2006;6:130.

    Article  Google Scholar 

  48. Van TT, Hanibuchi M, Goto H, Kuramoto T, Yukishige S, Kakiuchi S, et al. SU6668, a multiple tyrosine kinase inhibitor, inhibits progression of human malignant pleural mesothelioma in an orthotopic model. Respirology. 2012;17:984–90.

    Article  Google Scholar 

  49. Wu L, Allo G, John T, Li M, Tagawa T, Opitz I, et al. Patient-derived xenograft establishment from human malignant pleural mesothelioma. Clin Cancer Res. 2017;23:1060–7.

    Article  Google Scholar 

  50. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.

    Article  CAS  Google Scholar 

  51. Goodglick LA, Vaslet CA, Messier NJ, Kane AB. Growth factor responses and protooncogene expression of murine mesothelial cell lines derived from asbestos-induced mesotheliomas. Toxicol Pathol. 1997;25:565–73.

    Article  CAS  Google Scholar 

  52. Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, van, et al. IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol. 2003;171:5051–63.

    Article  CAS  Google Scholar 

  53. Miselis NR, Wu ZJ, Van Rooijen N, Kane AB. Targeting tumor-associated macrophages in an orthotopic murine model of diffuse malignant mesothelioma. Mol Cancer Ther. 2008;7:788–99.

    Article  CAS  Google Scholar 

  54. Miselis NR, Lau BW, Wu Z, Kane AB. Kinetics of host cell recruitment during dissemination of diffuse malignant peritoneal mesothelioma. Cancer Microenviron. 2010;4:39–50.

    Article  Google Scholar 

  55. Mishalian I, Bayuh R, Levy L, Zolotarov L, Michaeli J, Fridlender ZG. Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol Immunother. 2013;62:1745–56.

    Article  CAS  Google Scholar 

  56. Sekido Y. Molecular pathogenesis of malignant mesothelioma. Carcinogenesis. 2013;34:1413–9.

    Article  CAS  Google Scholar 

  57. Marsella JM, Liu BL, Vaslet CA, Kane AB. Susceptibility of p53-deficient mice to induction of mesothelioma by crocidolite asbestos fibers. Environ Health Perspect. 1997;105:1069–72.

    PubMed  PubMed Central  Google Scholar 

  58. Vaslet CA, Messier NJ, Kane AB. Accelerated progression of asbestos-induced mesotheliomas in heterozygous p53+/− mice. Toxicol Sci. 2002;68:331–8.

    Article  CAS  Google Scholar 

  59. Altomare DA, Vaslet CA, Skele KL, Rienzo AD, Devarajan K, Jhanwar SC, et al. A mouse model recapitulating molecular features of human mesothelioma. Cancer Res. 2005;65:8090–5.

    Article  CAS  Google Scholar 

  60. Jongsma J, van Montfort E, Vooijs M, Zevenhoven J, Krimpenfort P, van der Valk M, et al. A conditional mouse model for malignant mesothelioma. Cancer Cell. 2008;13:261–71.

    Article  CAS  Google Scholar 

  61. Bott M, Brevet M, Taylor BS, Shimizu S, Ito T, Wang L, et al. The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet. 2011;43:668–72.

    Article  CAS  Google Scholar 

  62. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43:1022–5.

    Article  CAS  Google Scholar 

  63. Wiesner T, Fried I, Ulz P, Stacher E, Popper H, Murali R, et al. Toward an improved definition of the tumor spectrum associated with BAP1 germline mutations. J Clin Oncol. 2012;30:e337–40.

    Article  Google Scholar 

  64. Cheung M, Testa JR. BAP1, a tumor suppressor gene driving malignant mesothelioma. Transl Lung Cancer Res. 2017;6:270–8.

    Article  CAS  Google Scholar 

  65. Robinson C, Walsh A, Larma I, O’Halloran S, Nowak AK, Lake RA. MexTAg mice exposed to asbestos develop cancer that faithfully replicates key features of the pathogenesis of human mesothelioma. Eur J Cancer. 2011;47:151–61.

    Article  CAS  Google Scholar 

  66. Tsuji AB, Sogawa C, Sugyo A, Sudo H, Toyohara J, Koizumi M, et al. Comparison of conventional and novel PET tracers for imaging mesothelioma in nude mice with subcutaneous and intrapleural xenografts. Nucl Med Biol. 2009;36:379–88.

    Article  CAS  Google Scholar 

  67. Saito Y, Furukawa T, Arano Y, Fujibayashi Y, Saga T. Comparison of semiquantitative fluorescence imaging and PET tracer uptake in mesothelioma models as a monitoring system for growth and therapeutic effects. Nucl Med Biol. 2008;35:851–60.

    Article  CAS  Google Scholar 

  68. Yanagihara K, Tsumuraya M, Takigahira M, Mihara K, Kubo T, Ohuchi K, et al. An orthotopic implantation mouse model of human malignant pleural mesothelioma for in vivo photon counting analysis and evaluation of the effect of S-1 therapy. Int J Cancer. 2010;126:2835–46.

    CAS  PubMed  Google Scholar 

  69. Feng M, Zhang J, Anver M, Hassan R, Ho M. In vivo imaging of human malignant mesothelioma grown orthotopically in the peritoneal cavity of nude mice. J Cancer. 2011;2:123–31.

    Article  CAS  Google Scholar 

  70. Yamaoka N, Kawasaki Y, Xu Y, Yamamoto H, Terada N, Okamura H, et al. Establishment of in vivo fluorescence imaging in mouse models of malignant mesothelioma. Int J Oncol. 2010;37:273–9.

    CAS  PubMed  Google Scholar 

  71. Meerang M, Boss A, Kenkel D, Broggini-Tenzer A, Bérard K, Lauk O, et al. Evaluation of imaging techniques for the assessment of tumour progression in an orthotopic rat model of malignant pleural mesothelioma. Eur J Cardiothorac Surg. 2015;47:e34–41.

    Article  Google Scholar 

  72. Vázquez R, Licandro SA, Astorgues-Xerri L, Lettera E, Panini N, Romano M, et al. Promising in vivo efficacy of the BET bromodomain inhibitor OTX015/MK-8628 in malignant pleural mesothelioma xenografts. Int J Cancer. 2017;140:197–207.

    Article  Google Scholar 

  73. Giordano S, Zucchetti M, Decio A, Cesca M, Fuso Nerini I, Maiezza M, et al. Heterogeneity of paclitaxel distribution in different tumor models assessed by MALDI mass spectrometry imaging. Sci Rep. 2016;6:39284.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our preclinical work on MM is supported by Fondazione Buzzi Unicem. We gratefully acknowledge Maurizio D’Incalci for suggestions and critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Frapolli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fuso Nerini, I., Frapolli, R. (2019). Preclinical Models in Mesothelioma. In: Ceresoli, G., Bombardieri, E., D'Incalci, M. (eds) Mesothelioma. Springer, Cham. https://doi.org/10.1007/978-3-030-16884-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16884-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16883-4

  • Online ISBN: 978-3-030-16884-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics