Skip to main content

In Vitro Release Tests as a Critical Quality Attribute in Topical Product Development

  • Chapter
  • First Online:
The Role of Microstructure in Topical Drug Product Development

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 36))

Abstract

Critical quality attributes (CQAs) play an important role in demonstrating Q1, Q2, and Q3 equivalence of topical products between the test and reference products. In vitro testing is one of the CQAs that is predominantly used in the correlation of Q3 microstructure to product performance. Two types of in vitro tests are typically employed to understand the microstructure, namely, in vitro release tests (IVRT) and in vitro permeation tests (IVPT). IVRT provides information on the release of the drug from a formulation and IVPT provides information on the permeation of the drug through the skin. Both can be influenced by the type of dosage form that includes gels, creams, ointments, and lotions. Each of the dosage forms has a different matrix that varies in complexity and affects the IVRT/IVPT differently. Different microstructure parameters influence release rates and some of these include: viscosity and rheological properties, globule and particle sizes, pH, phase homogeneity, polymorphism, etc. Excipients have an influence on microstructure properties: for example, the type and grade of the excipient, different solvents, co-solvents, penetration enhancers, preservatives, coloring agents, and fragrances. Microstructure properties are also greatly influenced by the critical processing parameters (CPPs). Examples are mixing time, cooling/heating, mixer type, mixing temperature, speed and duration, and hold times at various process stops. IVRT plays a very important role in evaluating any post-approval change in process that can impact product quality and performance. FDA has issued the SUPAC-SS guidance to identify the different levels of process changes and how IVRT should be conducted to evaluate the impact. The various process level changes and what methodology should be adopted are discussed. In summary, this chapter provides an introduction to in vitro release and permeation testing and how this test can be a tool in evaluating Q3 microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • M. Alberti, Y. Dancik, G. Sriram, B. Wu, Y.L. Teo, Z. Feng, M. Bigliardi-Qi, R.G. Wu, Z.P. Wang, P.L. Bigliardi, Multi-chamber microfluidic platform for high-precision skin permeation testing. Lab Chip 17, 1625–1634 (2017)

    Article  CAS  PubMed  Google Scholar 

  • W.L. Au, M. Skinner, I. Kanfer, Comparison of tape stripping with the human skin blanching assay for the bioequivalence assessment of topical clobetasol propionate formulations. J. Pharm. Pharma. Sci. 13(1), 11–20 (2010)

    Article  CAS  Google Scholar 

  • B. Balazs, G. Vizseralek, S. Berko, M. Budai-Szucs, A. Kelemen, B. Sinko, K. Takacs-Novak, P. Szabo-Revesz, E. Csanyi, Investigation of the efficacy of transdermal penetration enhancers through the use of human skin and a skin mimic artificial membrane. J. Pharm. Sci. 105, 1134–1140 (2016)

    Article  CAS  PubMed  Google Scholar 

  • R. Baynes, J. Riviere, T. Franz, N. Monteiro-Riviere, P. Lehman, M. Peyrou, P.L. Toutain, Challenges obtaining a biowaiver for topical veterinary dosage forms. J. Vet. Pharmacol. Ther. 35(Suppl 1), 103–114 (2012)

    Article  PubMed  Google Scholar 

  • M. Bodenlenz, C. Ho¨fferer, C. Magnes, et al., Dermal PK/PD of a lipophilic topical drug in psoriatic patients by continuous intradermal membrane-free sampling. Eur. J. Pharm. Biopharm 81(3), 635–641 (2012)

    Article  CAS  PubMed  Google Scholar 

  • M. Bodenlenz, B. Aigner, C. Dragatin, et al., Clinical applicability of dOFM devices for dermal sampling. Skin Res. Technol. 19(4), 474–483 (2013)

    CAS  PubMed  Google Scholar 

  • M. Bodenlenz, K.I. Tiffner, R. Raml, T. Augustin, C. Dragatin, T. Birngruber, D. Schimek, G. Schwagerlez, T.R. Pieber, S.G. Raney, I. Kanfer, F. Sinner, Open flow microperfusion as a dermal pharmacokinetic approach to evaluate topical bioequivalence. Clin Pharmacokinetics 56, 91–98 (2017)

    Article  CAS  Google Scholar 

  • F. Bonina, C. Puglia, D. Trombetta, M.C. Dragani, M.M. Gentile, G. Clavenna, Vehicle effects on in vitro skin permeation of thiocolchicoside. Pharmazie 57, 750–752 (2002)

    CAS  PubMed  Google Scholar 

  • R.-K. Chang, A. Raw, R. Lionberger, L. Yu, Generic development of topical dermatologic products: Formulation development, process development, and testing of topical dermatologic products. AAPS J. 15(1), 41–52 (2013a)

    Article  CAS  PubMed  Google Scholar 

  • R.-K. Chang, A. Raw, R. Lionberger, L. Yu, Generic development of topical dermatologic products, part II: Quality by Design for Topical Semisolid Products. AAPS J. 15(3), 674–683 (2013b)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H.V. Chavda, Qbd in developing topical dosage forms. Ely. J. Pharm. Res. 2(1), 1–2 (2016)

    Google Scholar 

  • Y.W. Chien, Chapter 2: Developmental Concepts & Practice in Transdermal Therapeutic Systems, in Transdermal Controlled Systemic Medications, (Marcel Dekker, New York, 1987), pp. 44–47

    Google Scholar 

  • J.M. Christensen, M.C. Chuong, H. Le, L. Pham, E. Bendas, Hydrocortisone diffusion through synthetic membrane, mouse skin, and Epiderm cultured skin. Arch. Drug Inform. 4, 10–21 (2011)

    Article  CAS  Google Scholar 

  • S.E. Cross, M.S. Roberts, Use of in vitro human skin to model and predict the effect of changing blood flow on the flux and retention of topically applied solutes. J. Pharm. Sci. 97(8), 3442–3450 (2008)

    Article  CAS  PubMed  Google Scholar 

  • C. Dragatin, F. Polus, M. Bodenlenz, et al., Secukinumab distributes into dermal interstitial fluid of psoriasis patients as demonstrated by open flow microperfusion. Exp Dermatol 25(2), 157–159 (2016)

    Article  PubMed  Google Scholar 

  • D. Dupuis, R. Rougier, R. Roguet, C. Lotte, The measurement of the stratum corneum reservoir: A simple method to predict the influence of vehicles on in vivo percutaneous absorption. Br. J. Dermatol. 115, 233–238 (1986)

    Article  CAS  PubMed  Google Scholar 

  • B.A. Elewski, Percutaneous absorption kinetics of topical metronidazole formulations in vitro in the human cadaver skin model. Adv Ther 24(2), 239–246 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Food & Drug Administration, Product Specific Guidance for Generic Drug Development (2016). https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM428195.pdf

  • Food and Drug Administration, Guidance for Industry: Topical Dermatologic Drug Product NDAs and ANDAs In Vivo Bioavailability, Bioequivalence, in Vitro Release, and Associated Studies (1998)

    Google Scholar 

  • Food and Drug Administration (FDA), Guidance for Industry: PAT — A Framework for Innovative Pharmaceutical Development, Manufacturing, and Quality Assurance (Food and Drug Administration (FDA), Rockville, MD, 2004)

    Google Scholar 

  • Food and Drug Administration (FDA), Role of Models in the Quality by Design (QbD) Paradigm: Regulatory Perspective (2011). http://www.fda.gov/ohrms/dockets/ac/06/briefing/2006-4241b1-02-22-fda-qbd%20obp2%20304_haury.pdf

  • Fowler M, Quality by Design (QbD) Approach to Generic Transdermal or Topical Product Development (2015). Available at: http://www.americanpharmaceuticalreview.com/Featured-Articles/172883-Quality-by-Design-QbD-Approach-to-Generic-Transdermal-or-Topical-Product-Development

  • T.J. Franz, On the relevance of in vitro data. J. Invest. Dermatol. 64, 190–195 (1975)

    Article  CAS  PubMed  Google Scholar 

  • P.O. Fritsch, G. Gschnait, G. Kaaserer, et al., PUVA suppresses the proliferative stimulus produced by stripping on hairless mice. J. Invest. Dermatol. 73(2), 188–190 (1979)

    Article  CAS  PubMed  Google Scholar 

  • S.J. Gallagher, C.M. Heard, Solvent content and macroviscosity effects on the in vitro transcutaneous delivery and skin distribution of ketoprofen from simple gel formulations. Skin Pharmacol. Physiol. 18, 186–194 (2005)

    Article  CAS  PubMed  Google Scholar 

  • S.J. Gallagher, L. Trottet, C.M. Heard, Ketoprofen: Release from, permeation across and rheology of simple gel formulations that simulate increasing dryness. Int. J. Pharm. 268, 37–45 (2003)

    Article  CAS  PubMed  Google Scholar 

  • K. Goebel, M.E.O. Sato, D.F. Souza, S. Murakami, I.F. Andreazza, In vitro release of diclofenac diethylamine from gels: Evaluation of generic semisolid drug products in Brazil. Braz. J. Pharm. Sci. 49(2), 211–220 (2013)

    Article  CAS  Google Scholar 

  • Z. Guerol, S. Hekimoglu, R. Demirdamar, M. Sumnu, Percutaneous absorption of ketoprofen. I. In vitro release and percutaneous absorption of ketoprofen from different ointment bases. Pharm. Acta Helv. 71, 205–212 (1996)

    Article  Google Scholar 

  • J. Hadgraft, R.H. Guy, Feasibility Assessment in Topical and Transdermal Drug Delivery: Mathematical Models and In Vitro Studies, in Transdermal Drug Delivery, ed. by R. Guy, J. Hadgraft, 2nd edn., (Marcel Dekker, New York, 2003), pp. 1–23

    Google Scholar 

  • J. Hadgraft, M. Whitefield, P.H. Rosher, Skin penetration of topical formulations of ibuprofen 5%: An in vitro comparative study. Skin Pharmacol. Appl. Ski. Physiol. 16, 142 (2003)

    Google Scholar 

  • C. Herkenne, A. Naik, Y.N. Kalia, J. Hadgraft, R.H. Guy, Ibuprofen transport into and through skin from topical formulations: In vitro-in vivo comparison. J. Invest. Dermatol. 127, 135–142 (2007)

    Article  CAS  PubMed  Google Scholar 

  • T. Higuchi, Rate of release of medicaments from ointment bases containing drugs in suspension. J. Pharm. Sci. 50, 874–875 (1961)

    Article  CAS  PubMed  Google Scholar 

  • http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q8_R1/Step4/Q8_R2_Guideline.pdf (2009)

    Google Scholar 

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline, Quality Risk Management– Q9 (November 2005). Available at: www.ich.org

  • International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH Harmonised Tripartite Guideline, Pharmaceutical Quality Systems–Q10 (June 2008), Available at: www.ich.org. Accessed 21 Nov 2014

  • International Conference on Harmonization (ICH): Implementation of ICH Q8, Q9, Q10 (2010). https://www.ispe.org/index.php/ci_id/6286/la_id/1.htm. (Accessed June 2016)

  • International Conference on Harmonization (ICH) Q8(R2): Pharmaceutical Development (2009). http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html

  • J. Jain, Bioequivalence of topical dosage forms. J. Pharm. 2(2), 1–2 (2014)

    Google Scholar 

  • A. Jankowski, R. Dyja, B. Sarecka-Hujar, Dermal and transdermal delivery of active substances from semisolid bases. Indian J. Pharm. Sci. 79(4), 488–500 (2017)

    Article  Google Scholar 

  • J.M. Juran, The Quality Trilogy: A Universal Approach to Managing for Quality. Quality Progress, 19(8), 19–24 (1986)

    Google Scholar 

  • J.M. Juran, Juran on Quality by Design: The New Steps for Planning Quality into Goods and Services (Free Press, New York, 1992)

    Google Scholar 

  • M. Kietzmann, B. Blume, Percutaneous absorption of betamethasone from different formulations using the isolated perfused bovine udder. In Vitro Toxicol 10, 11–15 (1997)

    CAS  Google Scholar 

  • R.R. Klein, J.Q. Tao, S. Wilder, K. Burchett, Q. Bui, K.D. Thakker, Development of an in vitro release test (IVRT) for a vaginal microbicide gel. Dissolut. Technol. 17(4), 6–10 (2010)

    Article  CAS  Google Scholar 

  • Y.S. Krishnaiah, X. Xu, Z. Rahman, Y. Yang, U. Katragadda, R. Lionberger, J.R. Peters, K. Uhl, M.A. Khan, Development of performance matrix for generic product equivalence of acyclovir topical creams. Int. J. Pharm. 475(1–2), 110–122 (2014a)

    Article  CAS  PubMed  Google Scholar 

  • Y.S. Krishnaiah, N. Kamal, N. Pavurala, X. Xu, M.A. Khan, Effect of Aqueous Phase pH on the In Vitro Performance of Acyclovir Topical Creams AAPS poster, AAPS Annual Meeting and Exposition, San Diego, CA (2014b)

    Google Scholar 

  • Y.S. Krishnaiah, N. Kamal, N. Pavurala, X. Xu, M.A. Khan, Development of Discriminatory In Vitro Release Test (IVRT) and In Vitro Permeation Test (IVPT) Methods for Acyclovir Topical Cream Using Quality by Design Approach (AAPS poster, San Diego, CA, 2016)

    Google Scholar 

  • P.A. Lehman, S.G. Raney, T.J. Franz, Percutaneous absorption in man: in vitro-in vivo correlation. Skin Pharmacol. Physiol. 24(4), 224–230 (2011)

    Article  CAS  PubMed  Google Scholar 

  • R. Lionberger, S. Lee, A. Raw, L. Yu, Quality by design: Concepts for ANDAs. AAPS J. 10(2), 268–276 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N.A. Megrab, A.C. Williams, B.W. Barry, Oestradiol permeation through human skin and silastic membrane: effects of propylene glycol and supersaturation. J. Control. Release 36, 277–294 (1995)

    Article  CAS  Google Scholar 

  • P. Minghetti, A. Casiraghi, F. Cilurzo, L. Montanari, M. Marazzi, L. Falcone, V. Donati, Comparison of different membranes with cultures of keratinocytes from man for percutaneous absorption of nitroglycerine. J. Pharm. Pharmacol. 51, 673–678 (1999)

    Article  CAS  PubMed  Google Scholar 

  • S.N. Murthy, Characterizing the critical quality attributes and in vitro bioavailability of acyclovir and metronidazole topical products. Perspectives in Percutaneous Penetration Conference 2016, 2014

    Google Scholar 

  • C. Nagelreiter, S. Raffeiner, C. Geverhofer, V. Klang, C. Valenta, Influence of drug content, type of semi-solid vehicle and rheological properties on the skin penetration of the model drug fludrocortisone acetate. Int. J. Pharm. 448(1), 305–312 (2013)

    Article  CAS  PubMed  Google Scholar 

  • G.M. Nemecek, A.D. Dayan, Safety evaluation of human living skin equivalents. Toxicol. Pathol. 27, 101–103 (1999)

    Article  CAS  PubMed  Google Scholar 

  • V.E. Nwoko, Semi Solid dosage Forms Manufacturing: Tools, Critical Process Parameters, Strategies, Optimization and Validation. Sch. Acad. J. Pharm. 3, 153–161 (2014)

    Google Scholar 

  • D.W. Osborne Compositions for topical application of therapeutic agents. US patent 6,620,435 B1, assignee ViroTex Coroporation (2003)

    Google Scholar 

  • D.W. Osborne, Impact of quality by design on topical product excipient suppliers, part I: A drug Manufacturer’s perspective. Pharm. Technol. 40(10), 38–43 (2015)

    Google Scholar 

  • C. Puglia, P. Blasi, A. Rizza, F. Schoubben, F. Bonina, C. Rossi, M. Ricci, Lipid nanoparticles for prolonged topical delivery: An in vitro and in vivo investigation. Int. J. Pharm. 357, 295–304 (2008)

    Article  CAS  PubMed  Google Scholar 

  • S.A. Rabbani, Approaches for bioequivalence assessment of topical dermatological formulations. Adv. Bioequival. Bioavail. 1(1), 1–3 (2018)

    Google Scholar 

  • F.S. Radulescu, D.S. Miron, Physicochemical characterization of acyclovir topical semisolid dosage forms towards TCS validation. 3rd FDA/PQRI Conference on Advancing Product Quality, 22-24 Mar2017

    Google Scholar 

  • V. Rai, J. Terebetski, S. Silva, B. Michniak-Kohn, Human Skin Equivalents (HSEs) as an alternative for transdermal permeation, phototoxicity and cytotoxicity studies. Transdermal 2(3), 5–8 (2010)

    Google Scholar 

  • S. Raney, Strategies to improve patient access to high quality topical products AAPS workshop dermatological drug products: developmental & regulatory considerations, 12 Nov 2017a

    Google Scholar 

  • S. Raney, In vitro characterization of topical semisolid dosage forms. Presented at the 3rd PQRI/FDA Conference on Advancing Product Quality (2017b)

    Google Scholar 

  • Roberts MS, Mohammed Y, Namjoshi S, Jung N, Chaitanya K, Cheruvu S, Windbergs M, Liu X, Benson HAE, Naegel A, Wittum R, Stokes J, Shewan H, Ghosh P, Ramezanli T, Raney S, Grice JE, Correlation of physicochemical characteristics and in vitro permeation test (IVPT) results for acyclovir and metronidazole topical products. FDA Workshop on Bioequivalence Testing of Topical Drug Products, 2017

    Google Scholar 

  • F.P. Schmook, J.G. Meingasser, A. Billich, Comparison of human skin or epidermis models with human and animal skin in in-vitro percutaneous absorption. Int. J. Pharm. 215, 51–56 (2001)

    Article  CAS  PubMed  Google Scholar 

  • V.P. Shah, J.S. Elkins, R.L. Williams, Evaluation of the test system used for in vitro release of drugs for topical dermatological drug products. Pharm. Dev. Technol. 4, 377–385 (1999)

    Article  CAS  PubMed  Google Scholar 

  • A.H. Shojaei, B. Berner, X.L. Li, Transbuccal delivery of acyclovir: I in vitro determination of routes of buccal transport. Pharm. Res. 15, 1182–1118 (1998)

    Article  CAS  PubMed  Google Scholar 

  • C. Shukla, E.D. Bashaw, G. Stagni, E. Benfeldt, Applications of dermal microdialysis: A review. J. Drug Deliv. Sci. Technol. 24(3), 259–269 (2014)

    Article  CAS  Google Scholar 

  • O. Siddiqui, M.S. Roberts, A.E. Polack, The effect of iontophoresis and vehicle pH on the in-vitro permeation of lignocaine through human stratum corneum. J. Pharm. Pharmacol. 37(10), 732–735 (1985)

    Article  CAS  PubMed  Google Scholar 

  • P.J. Sinko, Diffusion, in Martin’s Physical Pharmacy and Pharmaceutical Sciences, ed. by P. J. Sinko, 5th edn., (Lippincott Williams and Wilkins, Philadelphia, PA, 2006), pp. 301–335

    Google Scholar 

  • A. Sivaraman, A.K. Banga, Quality by design approaches for topical dermatological dosage forms. Res. Rep. Transdermal Drug Deliv. 4, 9–21 (2015)

    Google Scholar 

  • R.K. Subedi, S.Y. Oh, M.K. Chun, H.K. Choi, Recent advances in transdermal drug delivery. Arch. Pharm. Res. 33, 339–351 (2010)

    Article  CAS  PubMed  Google Scholar 

  • K.D. Thakker, W.H. Chern, Development and validation of in vitro release tests for semisolid dosage forms – Case study. Dissolut. Technol. 10(2), 10–15 (2003)

    Article  CAS  Google Scholar 

  • K.I. Tifffner, I. Kanfer, T. Augustin, R. Raml, S.G. Raney, A comprehensive approach to quality and validate the essential parameters of an in vitro release test (IVRT) method for acyclovir cream, 5%. Int. J. Pharm. 535, 217–227 (2018)

    Article  CAS  Google Scholar 

  • K. Tojo, P.R. Keshary, Y.W. Chien, Drug permeation through skin from matrix-type drug delivery systems. Chem. Engineer. J. 32(3), B57–B64 (1986)

    Article  CAS  Google Scholar 

  • J.C. Tsia, S.A. Chuang, M.Y. Hsu, H.M. Sheu, Distribution of salicylic acid in human stratum corneum following topical application in vivo: A comparison of six different formulations. Int. J. Pharm. 188, 145–153 (1999)

    Article  Google Scholar 

  • U.S. USP chapter <1724> Semisolid drug products – performance tests, in: USP 40, pp 2055–2067 (2017)

    Google Scholar 

  • U.S. FDA, Guidance for industry nonsterile semisolid dosage forms, scale-up and Post-approval changes: chemistry, manufacturing, and controls; in vitro release testing and in vivo bioequivalence documentation (SUPAC-SS). Guidance for Industry. US. (1997)

    Google Scholar 

  • U.S. FDA. Formal Meetings Between FDA and ANDA Applicants of Complex Products Under GDUFA, Guidance for Industry, draft guidance (2017)

    Google Scholar 

  • U.S. FDA, Product-Specific Guidances for Generic Product Development (2019)

    Google Scholar 

  • U.S. Food and Drug Administration Center for Drug Evaluation and Research (CDER), Manual of Policies and Procedures MAPP 5016.1. Applying ICH Q8(R2), Q9, and Q10 Principles to CMC Review. February 2011. Available at: www.fda.gov. Accessed 21 Nov 2014.

  • J. Vonguru, R. Gilman, R. Klein, D.M. Mattocks, K.D. Thakker, Developing in vitro release testing (IVRT) methods for petrolatum based semi-solid dosage forms. Abstract submission, AAPS (2015)

    Google Scholar 

  • C.K. Wang, C.F. Nelson, A.M. Brinkman, A.C. Miller, W.K. Hoffler, Spontaneous cell sorting of fibroblasts and keratinocytes creates an organotypic human skin equivalent. J Invest Dermatol 114, 674–680 (2000)

    Article  CAS  PubMed  Google Scholar 

  • J. Wolf, Die innere Struktur der Zellen des Straum desquamans der mensschlichen Epidermis. Z mikranat Forsch 46, 170–202 (1939)

    Google Scholar 

  • X. Xu, M. Al-Ghabeish, Y.S. Krishnaiah, Z. Rahman, M.A. Khan, Kinetics of drug release from ointments: Role of transient-boundary layer. Int J Pharm. 494, 31–39 (2015)

    Article  CAS  PubMed  Google Scholar 

  • L.X. Yu, G. Amidon, M.A. Khan, S.W. Hoag, J. Polli, G.K. Raju, J. Woodcock, Understanding pharmaceutical quality by design. APPS J 16(4), 771–783 (2014)

    CAS  Google Scholar 

  • Z. Zheng, B. Michniak-Kohn, Tissue engineered human skin equivalents. Pharmaceutics ISSN 1999–4923 (2012). www.mdpi.com/journal/pharmaceutics; https://doi.org/10.3390/pharmaceutics4010026, 4: 26–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Raghavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 AAPS (American Association of Pharmaceutical Scientists)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raghavan, L., Brown, M., Michniak-Kohn, B., Ng, S., Sammeta, S. (2019). In Vitro Release Tests as a Critical Quality Attribute in Topical Product Development. In: Langley, N., Michniak-Kohn, B., Osborne, D. (eds) The Role of Microstructure in Topical Drug Product Development. AAPS Advances in the Pharmaceutical Sciences Series, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-17355-5_2

Download citation

Publish with us

Policies and ethics