Skip to main content

The Effect of Ultraviolet Irradiation on the Electro-transport Properties of Carbon Nanotubes

Transport Properties of Ultraviolet Irradiated Carbon Nanotubes

  • Conference paper
  • First Online:
Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications (NANO 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 222))

Included in the following conference series:

Abstract

The results of studies of UV irradiation on the bulk specimens of MWCNTs and SWCNTs are presented. It is shown that the short-term ultraviolet irradiation leads to partial functionalization of the CNTs with oxygen-containing functional groups. It is revealed that short-time UV irradiation induces a decrease in the resistivity of bulk CNT specimens. However, there is no direct correlation between the degree of fictionalization and the relative decrease in resistivity. It is shown that the decrease in resistivity can be caused both by reducing the contact resistance between individual tubes and by changing the conduction mechanisms of the tubes themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Odegard GM, Bandyopadhyay A (2011) Physical aging of epoxy polymers and their composites. J Polym Sci B Polym Phys 49(24):1695–1716

    Article  ADS  Google Scholar 

  2. Ning X, Xiang Z, Peng Z, Zhang S, Chen S (2013) Effect of UV ageing on space charge characteristics of epoxy resin and its nanocomposites, 2013 IEEE International Conference on Solid Dielectrics (ICSD), 30 June – 4 July 2013. https://doi.org/10.1109/ICSD.2013.6619663

  3. Zhang W, Shentu B, Weng Z (2018) Preparation and properties of heat and ultraviolet- induced bonding and debonding epoxy/epoxy acrylate adhesives. J Appl Polym Sci 135:46435

    Article  Google Scholar 

  4. Durmus H, Safak H, Akbas HZ, Ahmetli G (2011) Optical properties of modified epoxy resin with various oxime derivatives in the UV-ViS spectral region. J Appl Polym Sci 120:1490–1495

    Article  Google Scholar 

  5. Gaidukovs S, Medvids A, Onufrijevs P, Grase L (2018) UV-light-induced curing of branched epoxy novolac resin for coatings. Express Polym Lett 12(10):918–929

    Article  Google Scholar 

  6. Ferry L, Alexander-Katz R, Vigier G, Garapon C (1997) Interaction between UV radiation and filled polytetrafluoroethylene (PTFE). I. Degradation processes. J Polym Sci B 36(12):2057–2067

    Article  Google Scholar 

  7. Ferry L, Vassoille R, Vigier G, Bessede JL (2003) Study of polytetrafluoroethylene crystallization. Acta Polym 46(4):300–306

    Article  Google Scholar 

  8. Perets Y, Matzui L, Vovchenko L, Ovsiienko I, Yakovenko O, Lazareno O, Zhuravkov O, Brusylovets O (2016) Influence of ultraviolet/ozonolysis treatment of nanocarbon filler on the electrical resistivity of epoxy composites. Nanoscale Res Lett 11:370–1-370-4

    Article  ADS  Google Scholar 

  9. Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Docoslis A (2008) Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym Degrad Stab 93:952–967

    Article  Google Scholar 

  10. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840

    Article  Google Scholar 

  11. Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single-walled carbon nanotubes. J Phys Chem B 107:3712–3718

    Article  Google Scholar 

  12. Tchoul MN, Ford WT, Lolli G, Resasco DE, Arepalli S (2007) Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon nanotubes. Chem Mater 19:5765–5772

    Article  Google Scholar 

  13. Minchenko OH, Tsymbal DO, Prylutska SV, Hnatiuk OS, Prylutskyy YI (2018) Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes. Toxicol In Vitro 52:122–130

    Article  Google Scholar 

  14. Ovsiienko IV, Len TA, Matzui LY, Tkachuk VY, Berkutov IB, Mirzoiev IG, Prylutskyy YI, Tsierkezos N, Ritter U (2016) Magnetoresistance of functionalized carbon nanotubes. Mat-wiss u Werkstofftech 47:254–262

    Article  Google Scholar 

  15. Matzui LY, Ovsienko IV, Len TA, Prylutskyy YI, Scharff P (2005) Transport properties of composites with carbon nanotube-based composites. Fuller Nanotub Car N 13(Supplement 1):259

    Article  Google Scholar 

  16. Matzui DV, Ovsiyenko IV, Lazarenko OA, Prylutskyy YI, Matzui VI (2011) Abnormal еlectron transport in graphite intercalation compounds with iron. Mol Cryst Liq Cryst 535:64–73

    Article  Google Scholar 

  17. Len TA, Ovsiienko IV, Matzui LY, Berkutov IB, Mirzoiev IG, Gnida D, Kunitskyi YA (2017) Magnetoresistance of modified carbon nanotubes. Journal of Nano- and Electronic Physics 9:01018-1–01018-7

    Article  Google Scholar 

  18. Liu B, Sundqvist B, Andersson O, Wagberg T, Nyeanchi EB, Zhu X-M, Zou G (2001) Electric resistance of single-walled carbon nanotubes under hydrostatic pressure. Solid State Commun 118:31–36

    Article  ADS  Google Scholar 

  19. Chauvet O, Benoit JM, Corraze B (2004) Electrical, magneto-transport and localization of charge carriers in nanocomposites based on carbon nanotubes. Carbon 42:949–952

    Article  Google Scholar 

  20. Ovsienko IV, Len TA, Matsuy LY, Prylutskyy YI, Berkutov IB, Andrievskii VV, Komnik YF, Mirzoiev IG, Grechnev GE, Kolesnichenko YA, Hayn R, Scharf P (2015) Magnetoresistance and electrical resistivity of N-doped multi-walled carbon nanotubes at low temperatures. Phys Status Solidi B 252:1402–1409

    Article  ADS  Google Scholar 

  21. Len TA, Ovsiienko IV, Matzui LY, Tugay A (2014) Electrical resistance and magnetoresistance of modified carbon nanotubes. J Nano- Electron Phys 6:04024-1–04024-5

    Google Scholar 

  22. Ovsienko IV, Len TA, Matzui LY, Prylutskyy YI, Ritter U, Scharf P, Normand F, Eklund P (2007) Resistance of nanocarbon material containing nanotubes. Mol Cryst Liq Cryst 468:289–297

    Article  Google Scholar 

  23. Shiraishi M, Ata M (2002) Conduction mechanisms in single-walled carbon nanotubes. Synth Met 128:235–239

    Article  Google Scholar 

  24. Simmons JM, Nichols BM, Baker SE, Marcus MS, Castellini OM, Lee CS, Hamers RJ, Eriksson MA (2006) The effect of ozone oxidation on single-walled carbon nanotubes. J Phys Chem B 110:7113–7118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marinin, O.D. et al. (2019). The Effect of Ultraviolet Irradiation on the Electro-transport Properties of Carbon Nanotubes. In: Fesenko, O., Yatsenko, L. (eds) Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications. NANO 2018. Springer Proceedings in Physics, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-030-17755-3_10

Download citation

Publish with us

Policies and ethics