Skip to main content

Lightning Shielding Failure Investigation by High Voltage Experiments

  • Chapter
  • First Online:
Electrical Design of a 400 kV Composite Tower

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 557))

  • 340 Accesses

Abstract

The lightning shielding performance of shield wires in the fully composite pylon has been verified by experimental methods in this chapter. In order to verify the conclusion obtained by electro-geometric model (EGM) analysis in Chap. 6, a scale model test has been performed. Direct lightning strikes to phase conductors are simulated by electrical discharges to scale phase conductors with fast-front and slow-front impulses in the high voltage lab. Shielding failure rate (SFR) is obtained by interpreting the ratio of number of discharges to scale phase conductors to the total number of discharges. Additionally, the maximum shielding failure current is obtained by scale model tests. Comparing results developed by theoretical method—electro-geometric model (EGM) and experimental method-scale model test, it proves that these two methods verify each other and support each other’s application to the lightning shielding investigation in the innovative fully composite pylon. A conclusion can be drawn that, as regards to protection from direct lightning strikes, shield wires in the fully composite pylon can prove acceptable lightning protection for overhead lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. S. 1410, Guide for improving the lightning performance of electric power overhead distribution lines, Std., Jan 2011

    Google Scholar 

  2. S. Taniguchi, S. Okabe, T. Takahashi, T. Shindo, Discharge characteristics of 5 m long air gap under foggy conditions with lightning shielding of transmission line. IEEE Trans. Dielectr. Electr. Insul. 15(4), 1031–1037 (2008)

    Article  Google Scholar 

  3. J. Takami, S. Okabe, Characteristics of direct lightning strokes to phase conductors of UHV transmission lines. IEEE Trans. Power Deliv. 22(1), 537–546 (2007)

    Article  Google Scholar 

  4. Y. An, Y. Hu, X. Wen, Z. Jiang, L. Lan, Review of experimental study on lightning shielding performance of transmission line. High Volt. Appar. 52(7), 1–9 (2016). (in Chinese)

    Google Scholar 

  5. Q. Wang, T. Jahangiri, C.L. Bak, F.F. da Silva, H. Skouboe, Investigation on shielding failure of a novel 400 kV double-circuit composite tower. IEEE Trans. Power Deliv. 33(2), 752–760 (2018)

    Article  Google Scholar 

  6. A.R. Hileman, Insulation Coordination for Power Systems. (Taylor & Francis, 1999). Chapter 6: The lightning flashes

    Google Scholar 

  7. S. Taniguchi, S. Okabe, A contribution to the investigation of the shielding effect of transmission line conductors to lightning strikes. IEEE Trans. Dielectr. Electr. Insul. 15(3), 710–720 (2008). Jun

    Article  Google Scholar 

  8. H. He, J. He, D. Zhang, L. Ding, Z. Jiang, C. Wang, H. Ye, Experimental study on lightning shielding performance of +/\(-\) 500 kV transmission lines, in Conference on Asia-Pacific Power and Energy Engineering, Wuhan, China, Mar 2009, pp. 1–7

    Google Scholar 

  9. G. Qian, X. Wang, Y. Wang, The lightning shielding simulation theory and test technology. High Volt. Eng. 24(2), 26–31 (1998). (in Chinese)

    Google Scholar 

  10. W. Chen, H. He, G. Qian, J. Chen, Review of the lightning shielding against direct lightning strokes based on laboratory long air gap discharges. Proc. Chin. Soc. Electr. Eng. 32(10), 1–12 (2012)

    Google Scholar 

  11. C. W. C4-26, Evaluation of lightning shielding analysis methods for EHV and UHV DC and AC transmission lines, CIGRE Technical Brochure, Oct 2017

    Google Scholar 

  12. Z. An, L. Lan, X. Wen, Y. Wang, Impacting factors of large sized model test for lightning shielding performance of UHV transmission lines. Power Syst. Technol. 38(5) (2014)

    Google Scholar 

  13. T. Jahangiri, C.L. Bak, F.F. Silva, B. Endahl, Determination of minimum air clearances for a 420 kV novel unibody composite cross-arm, in 50th International Universities Power Engineering Conference (UPEC), Stokeontrent, UK, Sep 2015, pp. 1–6

    Google Scholar 

  14. Q. Wang, C.L. Bak, F.F. Silva, H. Skouboe, Scale model test on a novel 400 kV double-circuit composite pylon, in International Conference on Power System Transients Seoul, South Korea, Jun 2017

    Google Scholar 

  15. T. Jahangiri, C.L. Bak, F.F. Silva, B. Endahl, Assessment of lightning shielding performance of a 400 kV double-circuit fully composite transmission line pylon, in Cigré Session, Paris, France: CIGRE, Aug 2016

    Google Scholar 

  16. M.A. Uman, The Lightning Discharge. (Courier Corporation, 2001)

    Google Scholar 

  17. A.R. Hileman, Insulation Coordination for Power Systems. (Taylor & Francis, 1999). Chapter 6: The lightning flashes, p. 205

    Google Scholar 

  18. M.S. Banjanin, M.S. Savić, Z.M. Stojković, Lightning protection of overhead transmission lines using external ground wires. Electr. Power Syst. Res. 127, 206–212 (2015)

    Article  Google Scholar 

  19. T. Disyadej, S. Mallick, S. Grzybowski, Laboratory study for estimating the number of lightning flashes to transmission lines, in North American Power Symposium (NAPS), Starkville, USA, Oct 2009, pp. 1–4

    Google Scholar 

  20. K. Miyake, I. Kishizima, T. Suzuki, Study on experimental simulation of lightning strokes. IEEE Power Eng. Rev. 4, 41–42 (1981)

    Article  Google Scholar 

  21. Y. Wang, Y. An, E. Shenglong, X. Wen, Factors effect on discharge path to scaled UHV transmission lines, in International Conference on Lightning Protection, Oct 2014 (IEEE, Shanghai, China, 2014), pp. 493–497

    Google Scholar 

  22. I.W. Group, et al., A simplified method for estimating lightning performance of transmission lines, IEEE Trans. Power App. Syst.104(4), 919–932 (1985)

    Google Scholar 

  23. C. W. 33-01, Guide to procedures for estimating the lightning performance of transmission lines. CIGRE (1991)

    Google Scholar 

  24. Q. Wang, T. Jahangiri, C.L. Bak, F.F. da Silva, Experimental evaluation of shielding angles effects on lightning performance in a 400 kV AC double-circuit composite pylon, in CIGRÉ Symposium, Dublin, Ireland, May 2017

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohid Jahangiri .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jahangiri, T., Wang, Q., da Silva, F.F., Leth Bak, C. (2020). Lightning Shielding Failure Investigation by High Voltage Experiments. In: Electrical Design of a 400 kV Composite Tower. Lecture Notes in Electrical Engineering, vol 557. Springer, Cham. https://doi.org/10.1007/978-3-030-17843-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17843-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17842-0

  • Online ISBN: 978-3-030-17843-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics