Skip to main content

Abstract

Heterogeneity is one of the most complex problems in subsurface formations, and it is ubiquitous in many geoscience disciplines. Fluid storage and flow in porous media are governed by a variety of geological and petrophysical variables, including structure, stratigraphy, facies, lithology, porosity, and permeability. These variables all contribute to subsurface heterogeneities and have different scales, often in a hierarchical scheme.

Although this book is more focused on quantitative analyses of geospatial properties, this chapter introduces several topics on descriptive and (semi)quantitative analyses of geological and petrophysical variables, mainly regarding their scales and heterogeneities. These will provide a foundation for more quantitative analysis in other chapters.

There is no absolute scale of size in the Universe, for it is boundless towards the great and also boundless towards the small.

Oliver Heaviside

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, J. R. L. (1983). Studies in fluviatile sedimentation: Bars, bar complexes and sandstone sheets (low sinuosity braided streams) in the Brownstones (L. Devonian), Welsh Borders. Sedimentary Geology, 33, 237–293. https://doi.org/10.1016/0037-0738(83)90076-3.

    Article  Google Scholar 

  • Barlow, J. A., Jr., & Haun, J. D. (1970). Regional stratigraphy of frontier formation and relation to salt creek field, Wyoming. In M. T. Halbouty (Ed.), Geology of giant petroleum fields (AAPG Memoir 14). Tulsa.

    Google Scholar 

  • Beaubouef, R.T., Rossen, C., Zelt, F. B., Sullivan, M. D., Mohig, D. C., & Jennette, D. C. (1999). Deep-water sandstone, Brushy Canyon formation, West Texas, AAPG Hedberg Field Research Conference, April 15–20.

    Google Scholar 

  • Begg, S. H., & King, P. R. (1985). Modeling the effects of shales on reservoir performance: Calculation of effective permeability. Society of Petroleum Engineers Simulation Symposium, Dallas, Texas, February 10–13, SPE paper 13529.

    Google Scholar 

  • Brookfield, M. E. (1977). The origin of bounding surfaces in ancient aeolian sandstones. Sedimentology, 24, 303–332.

    Article  Google Scholar 

  • Campbell, C. V. (1967). Lamina, laminaset, bed, bedset. Sedimentology, 8, 7–26.

    Article  Google Scholar 

  • Cao, R., Sun, C., & Ma, Y. Z. (2015). Modeling wettability variation during long-term water flooding. Journal of Chemistry, 2015, 592951.

    Google Scholar 

  • Cao, R., Wang, Y., Cheng, L., Ma, Y. Z., Tian, X., & An, N. (2016). A new model for determining the effective permeability of tight formation. Transport in Porous Media. https://doi.org/10.1007/s11242-016-0623-0.

    Article  Google Scholar 

  • Cao, et al. (2017). Gas-water flow behavior in water-bearing tight gas reservoirs. Geofluids, 2017, 9745795. https://doi.org/10.1155/2017/974595.

    Article  Google Scholar 

  • Chiles, J. P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty. New York: Wiley, 699 p.

    Book  Google Scholar 

  • Delhomme, A. E. K., & Giannesini, J. F. (1979). New reservoir description technics improve simulation results in Hassi-Messaoud field – Algeria. Society of Petroleum Engineers. https://doi.org/10.2118/8435-MS.

  • Filak, J.-M., Ryzhov, S. A., Ibrahim, M., Dashti, L., Al-Houti, R. A., Ma, E. D. C., & Wang, Y. (2013). Upscaling a 900 million-cell static model to dynamic model of the world largest clastic oil field – Greater Burgan Field, Kuwait. Society of Petroleum Engineers. https://doi.org/10.2118/167280-MS.

  • Fitch, P. J. R., Lovell, M. A., Davies, S. J., Pritchard, T., & Harvey, P. K. (2015). An integrated and quantitative approach to petrophysical heterogeneity. Marine and Petroleum Geology, 63, 82–96.

    Article  Google Scholar 

  • Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97(458), 632–648.

    Article  MathSciNet  Google Scholar 

  • Haldorsen, H. H., & Lake, L. (1984). A new approach to shale management in field scale models. Society of Petroleum Engineers Journal, 24, 447–457.

    Article  Google Scholar 

  • Haq, B. U., Hardenbol, J., & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156–1167.

    Article  Google Scholar 

  • Jones, T. A., & Ma, Y. Z. (2001). Geologic characteristics of hole-effect variograms calculated from lithology-indicator variables. Mathematical Geology, 33(5), 615–629.

    Article  Google Scholar 

  • Kendall, C. G, St. C. (2012). SEPM STRATA. Website. http://www.sepmstrata.org/. Last Accessed 16 Feb 2018.

  • Kendall, C. G. (2014). Sequence stratigraphy. Encyclopedia of Marine Geosciences. https://doi.org/10.1007/978-94-007-6644-0_178-1.

    Google Scholar 

  • Lake, L. W., & Jensen, J. L. (1991). A review of heterogeneity measures used in reservoir characterization. In Situ, 15(4), 409–439.

    Google Scholar 

  • Li, S., Ma, Y. Z., Yu, X., Jiang, P., Li, M., & Li, M. (2014). Change of deltaic depositional environment and its impacts on reservoir properties—A braided delta in South China Sea. Marine and Petroleum Geology, 58, 760–775.

    Article  Google Scholar 

  • Ma, Y. Z., Seto, A., & Gomez, E. (2008). Frequentist meets spatialist: A marriage made in reservoir characterization and modeling. SPE 115836, SPE ATCE, Denver, CO.

    Google Scholar 

  • Ma, Y. Z., Seto, A., & Gomez, E. (2009). Depositional facies analysis and modeling of Judy Creek reef complex of the Late Devonian Swan Hills. Alberta, Canada, AAPG Bulletin.

    Google Scholar 

  • Ma, Y. Z., Gomez, E., Young, T. L., Cox, D. L., Luneau, B., & Iwere, F. (2011). Integrated reservoir modeling of a Pinedale tight-gas reservoir in the Greater Green River Basin, Wyoming. In Y. Z. Ma & P. LaPointe (Eds.), Uncertainty analysis and reservoir modeling (AAPG Memoir 96). Tulsa.

    Google Scholar 

  • Mayuga, M. N. (1970). Geology and development of California’s Giant-Wilmington Oil Field. In Geology of giant petroleum fields (AAPG Memoir 14). Tulsa.

    Google Scholar 

  • Miall, A. D. (1985). Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth Science Reviews, 22, 261–308.

    Article  Google Scholar 

  • Miall, A. (2016). Stratigraphy: A modern synthesis. New York: Springer.

    Book  Google Scholar 

  • Middleton, G. V. (1973). Johannes Walther’s Law of the correlation of facies. GSA Bulletin, 84(3), 979–988.

    Article  Google Scholar 

  • Mitchum, R. M., Vail, P. R., & Thompson, S., III. (1977). Seismic stratigraphy and global changes of sea level: Part 2. The depositional sequence as a basic unit for stratigraphic analysis. AAPG Memoir, 26, 53–62.

    Google Scholar 

  • Neal, J., & Abreu, V. (2009). Sequence stratigraphy hierarchy and the accommodation succession method. Geology, 37, 779–782.

    Article  Google Scholar 

  • Pickering, K. T., & Corregidor, J. (2000) 3D Reservoir scale study of Eocene confined submarine fans, south central Spanish Pyrenees. In P. Weimer, R.M. Slatt, J. Coleman, N.C. Rosen, H. Nelson, A.H. Bouma, M.J. Styzen, and D.T. Lawrence (Eds.), Deep Water Reservoirs of the World: SEPM, Gulf Coast Section, 20th Annual Bob F. Perkins Research Conference, p. 776–781.

    Google Scholar 

  • Pickering, K. T., Stow, D. A. V., Watson, M. P., & Hiscott, R. N. (1986). Deep-water facies, processes and models: A review and classification scheme for modern and ancient sediments. Earth Science Reviews, 23, 75–174.

    Article  Google Scholar 

  • Schlager, W. (1992). Sedimentology and sequence stratigraphy of reefs and carbonate platforms (AAPG Continuing Education Course Notes Series, v. 34), Tulsa, 71 p.

    Google Scholar 

  • Sprague, A. R., Patterson, P. E., Hill, R. E., Jones, C. R., Campion, K. M., Van Wagoner, J. C., Sullivan, M. D., Larue, D. K., Feldman, H. R., Demko, T. M., Wellner, R. W., Geslin, J. K. (2002). The Physical stratigraphy of Fluvial strata: A hierarchical approach to the analysis of genetically related stratigraphic elements for improved reservoir prediction, (Abstract) AAPG Annual Meeting.

    Google Scholar 

  • Sprague, A. R. G., Garfield, T. R., Goulding, F. J., Beaubouef, R. T., Sullivan, M. D., Rossen, C., Campion, K. M., Sickafoose, D. K., Abreu, D., Schellpeper, M. E., Jensen, G. N., Jennette, D. C., Pirmez, C., Dixon, B. T., Ying, D., Ardill, J., Mohrig, D. C., Porter, M. L., Farrell, M. E., & Mellere, D. (2005). Integrated slope channel depositional models: The key to successful prediction of reservoir presence and quality in offshore West Africa. CIPM, cuarto E-Exitep. Veracruz, Mexico.

    Google Scholar 

  • Vail, P. R., & Mitchum, R. M. (1977). Seismic stratigraphy and global changes of sea level: Part 1. Overview (AAPG Memoir 26). Tulsa: AAPG.

    Google Scholar 

  • Van Wagoner, J. C., Mitchum, R. M., Campion, K. M., & Rahmanian, V. D. (1990). Siliciclastic sequence stratigraphy in well logs, cores, and outcrops (AAPG Methods in Exploration Series, No. 7). Tulsa, 55 p.

    Google Scholar 

  • Walker, R. G. (1984). Facies models (2nd ed.). Geoscience Canada.

    Google Scholar 

  • Weimer, P., & Posamentier, H. (1993). Siliciclastic sequence stratigraphy (AAPG memoir 58). Tulsa.

    Google Scholar 

  • Wilson, J. L. (1975). Carbonate facies in geologic history. New York: Springer Verlag, 471p.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendices

1.1 Appendix 8.1 Large-Scale Tectonic Settings and their Characteristics

Stress/strain field

Contraction with deep, basement-involved thick packages

Contraction with shallow, moderate-thick packages

Extension with deep, basement-involved thick packages

Extension with shallow, moderate-thick packages

Strike-slip

Lateral flow of mobile substrate

Setting

Foreland cratonic uplifts

Accretionary wedge, passive margin slope or foreland fold belts

Rifts

Passive margin

Rifts, plate margins and tear faults

Accretionary wedge, passive margin or delta

Delta slope

Faults

Deeply penetrating steep faults, block-faulted arrays, dogleg fault networks

Imbricate thrust arrays, tear faults and relays,

Deeply penetrating steep faults, block-faulted arrays, dogleg fault networks

Listric, tear faults, growth faults

Deeply penetrating steep faults, faults en echelon, horse-tail splays, listric tear faults

Listric growth faults, folded faults, crestal grabens

Folds

Broad uplifts, drape folds, monoclines

Fault-bend folds, detachment folds, relay ramp folds

Broad uplifts, drape folds, monoclines

Rollovers, fault-bend folds

En echelon folds, positive flower structures, fault-bend folds, rollovers

Pillows, turtles, domes, detachment, monoclines

Strata

Deformed upper strata regionally, low to moderate shortening

Vertical duplication of strata, extensive shortening

Deformed lower strata regionally, low to moderate extension

Missing vertical strata, large extension

Offsets of markers, fault-throw reversals along strike

Strata interruptions, diapirs

Reservoir traps

Broad anticlines, fault closures

Faulted anticlines, stacked anticlines

Tilted fault blocks, horsts, fault closures, strata traps

Rollovers fault closures

Fault closures along flanks of flowers, rollovers, faulted folds, fault blocks

Flank monoclines, domes, strata traps

1.2 Appendix 8.2 Sequence Stratigraphic Hierarchy in Fluvial Setting

A sequence stratigraphic analysis can use either a top-down classification or a bottom-up classification of hierarchical stratigraphic elements and facies. Brookfield (1977) subdivided sedimentary formations using hierarchical order and surface boundaries. Allen (1983) described braided-stream fluviatile systems while recognizing eight geometrical shapes with specific lithologies and fabrics that were termed architectural elements. Miall (1985) extended architectural elements to other fluvial depositional systems. Pickering and Corregidor (2000) subdivided deepwater sedimentary bodies, recognizing a hierarchy of enveloping boundaries that separated genetically related stratigraphic architectural elements. The application of the concepts of architectural elements is now widely used for many depositional systems.

Sprague et al. (2002, 2005) used a top-down hierarchical classification of architectural elements for fluvial and deepwater settings that starts at a sedimentary basin scale. Successive downward subdivisions of the large-scale depositional systems form a series of elements that includes the channel complex systems, downward to channel complex sets, to channel complexes, to laminae (sometimes even to individual sand grains). This top-down classification is used to provide a framework for studies of the multiscale aspect of hierarchical stratigraphic elements and interrelated large-scale architectural elements and small-scale architectural elements. A bottom-up approach is equally valid, as shown by Kendall (2012) for fluvial settings (Fig. 8.16).

Fig. 8.16
figure 16

Fluvial architectural hierarchy. (From Sprague et al. 2002; Kendall 2012; sepmstrata.org)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, Y.Z. (2019). Multiscale Heterogeneities in Reservoir Geology and Petrophysical Properties. In: Quantitative Geosciences: Data Analytics, Geostatistics, Reservoir Characterization and Modeling. Springer, Cham. https://doi.org/10.1007/978-3-030-17860-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17860-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17859-8

  • Online ISBN: 978-3-030-17860-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics