Skip to main content

The Use of Psychrophilic Antarctic Yeast in the Biological Control of Post-harvest Diseases of Fruits Stored at Low Temperatures

  • Chapter
  • First Online:
Fungi of Antarctica

Abstract

The interest in the biotechnological potential of microorganisms belonging to unusual ecological niches, such as Antarctic environments, is little explored. Antarctic microbiology is a recent science, and little is known about the microbial diversity and genetic resources of Antarctica. Fungi present in Antarctica are adapted to the different extreme conditions of the region, including the yeasts that present a great potential for use in agriculture as biocontrol. Yeasts may have a high potential for controlling post-harvest diseases, especially those that develop during storage in cold rooms, a strategy that has not been explored much. Yeasts adapted to cold environments can, therefore, be identified and used as biological control agents for the management of post-harvest diseases. As refrigeration is still the main method for preserving and prolonging the shelf-life of fresh food, Antarctic yeasts are promising candidates for use as biological control agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abano E, Sam-Amoah LK (2012) Application of antagonistic microorganisms for the control of postharvest decays in fruits and vegetables. IJABR 2:1–8

    Google Scholar 

  • Arrarte E, Garmendia G, Rossini C, Wisniewski M, Vero S (2017) Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biol Control 109:14–20

    Article  CAS  Google Scholar 

  • Arras G, Cicco VD, Arru S, Lima G (1998) Biocontrol by yeasts of blue mould of citrus fruits and the mode of action of an isolate of Pichia guilliermondii. J Hort Sci Biotechnol 73:413–418

    Article  Google Scholar 

  • Axtell CA, Beattie GA (2002) Construction and characterization of a proU-gfp transcriptional fusion that measures water availability in a microbial habitat. Appl Environ Microbiol 68:4604–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barkai-Golan R (2001) Postharvest diseases of fruits and vegetable: development and control. Elsevier, Amasterdam, The Netherlands, p 418

    Google Scholar 

  • Blachinsky D, Antonov J, Bercovitz A, Elad B, Feldman K, Husid A, Lazare M, Marcov N, Shamai I, Keren-Zur M, Droby S (2007) Commercial applications of “Shemer” for the control of pre- and postharvest diseases. IOBC-WPRS Bull 30:75–78

    Google Scholar 

  • Blum LEB, Amarante CVT, Valdebenito-Sanhueza RM, Guimaraes LS, Dezanet A, Hack-Neto P (2004) Postharvest application of Cryptococcus laurentii reduces apple fruit rots. Fitopatologia Brasileira 29:433–436

    Article  Google Scholar 

  • Boekhout T, Kurtzman CP (1996) In: Wolf K (ed) Nonconventional yeasts in biotechnology. Springer-Verlag:Heidelberg, pp 1–81

    Google Scholar 

  • Buck JW, Burpee LL (2002) The effects of fungicides on the phylloplane yeast populations of creeping bentgrass. Can J Microbiol 48:522–529

    Article  CAS  PubMed  Google Scholar 

  • Bunster L, Fokkema NJ, Schippers B (1989) Effect of surface-active Pseudomonas spp. on leaf wettability. Appl Environ Microbiol 55:1340–1345

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buzzini P, Branda E, Goretti M, Turchetti B (2012) Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol Ecol 82:217–241

    Article  CAS  PubMed  Google Scholar 

  • Buzzini P, Turk M, Perini L, Turchetti B, Gunde-Cimerman N (2017) Yeasts in polar and subpolar habitats. In: Buzzini P, Lachance MA, Yurkov A (eds) Yeasts in natural ecosystems: diversity. Springer, Cham, pp 331–365

    Chapter  Google Scholar 

  • Calvo J, Calvente V, de Orellano ME, Benuzzi D, de Tosetti MIS (2007) Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. International Journal of Food Microbiology 113:251–257

    Article  PubMed  Google Scholar 

  • Carrasco M, Rozas MJ, Barahona S, Alcaino J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from king George Island, the sub-Antarctic region. BMC Microbiol 12:251

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalutz E, Wilson CL (1990) Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Dis 74:134–137

    Article  Google Scholar 

  • Chalutz E, Ben-Arie R, Droby S, Cohen L, Weiss B, Wilson CL (1988) Yeasts as biocontrol agents of postharvest diseases of fruit. Phytoparasitica 16:69–75

    Google Scholar 

  • Connell LB, Redman R, Craig S, Scorzetti G, Iszaard M, Rodriguez R (2008) Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microb Ecol 56:448–459

    Article  CAS  PubMed  Google Scholar 

  • Connell LB, Redman R, Rodriguez R, Barrett A, Iszard M, Fonseca A (2010) Dioszegia antarctica sp. nov. and Dioszegia cryoxerica sp. nov., psychrophilic basidiomycetous yeasts from polar desert soils in Antarctica. Evol Microbiol 60:1466–1472

    Article  CAS  Google Scholar 

  • Cook RJ, Backer KF (1983) The nature and practice of biological control of plant pathogens. APS, St. Paul, p 539

    Google Scholar 

  • De garcia V, Brizzio S, Libkind D, Buzzini P, Van Broock M (2007) Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiol Ecol 59(2):331–341

    Article  PubMed  CAS  Google Scholar 

  • Di Francesco A, Ugolini L, Lazzeri L, Mari M (2015) Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biol Control 81:8–14

    Article  CAS  Google Scholar 

  • Droby S, Chalutz E, Wilson CL, Wisniewski M (1989) Characterization of the biocontrol activity of Debaryomyces hansenii in the control of Penicillium digitatum on grapefruit. Can J Microbiol 35:794–800

    Article  Google Scholar 

  • Droby S, Cohen L, Daus A, Weiss B, Horev B, Chalutz E (1998) Commercial testing of aspire: a yeast preparation for the biological control of postharvest decay of citrus. Biol Control 12:97–101

    Article  Google Scholar 

  • Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol Technol 52:137–145

    Article  Google Scholar 

  • Droby S, Wisniewski M, Teixidó N, Spadaro D, Jijakli MH (2016) The Science development, and commercialization of postharvest biocontrol products. Postharvest Biol Technol 122:22–29

    Article  Google Scholar 

  • Dukare AS, Sangeeta P, Nambi VE, Gupta RK, Singh R, Sharma K, Vishwakarma RK (2018) Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit Rev Food Sci Nutr 16:1–16

    Google Scholar 

  • El-Neshawy SM, Wilson CL (1997) Nisin enhancement of biocontrol of postharvest diseases of apple with Candida oleophila. Postharvest Biol Technol 10:9–14

    Article  CAS  Google Scholar 

  • El-Otmani M, Ait-Oubahou A, Zacarías L (2011) Citrus spp.: orange, mandarin, tangerine, clementine, grapefruit, pomelo, lemon and lime. Postharvest Biol Technol Trop Subtrop Fruits: pp. 437–516

    Google Scholar 

  • Feliziani E, Romanazzi G (2016) Postharvest decay of strawberry fruit: etiology, epidemiology, and disease management. J Berry Res 6:47–63

    Article  CAS  Google Scholar 

  • Ferreira EMS, Malta CM, Bicalho JO, Pimenta RS (2018) A safe method to control the anthracnose in papaya. Rev Bras Frutic 40:1–6

    Google Scholar 

  • Filonow AB (1998) Role of competition for sugars by yeast in the biocontrol of gray mold of apple. Biocontrol Sci Technol 8:243–256

    Article  Google Scholar 

  • Fokkema NJ, Riphagen I, Poot RJ, De Jong C (1983) Aphid honeydew, a potential stimulant of Cochliobolus sativus and Septoria nodorum and the competitive role of saprophytic mycoflora. Trans British Mycol Soc 81:355–368

    Article  Google Scholar 

  • Fonseca A, Inacio J (2006) Phylloplane yeasts. In: Rosa C, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 263–301

    Chapter  Google Scholar 

  • Furbino LE, Godinho VM, Santiago IF, PellizarI FM, Alves TMA, Zani CL, Junior PAS, Romanha AJ, Carvalho AGO, Gil LHVG, Rosa CA, Minnis AM, Rosa LH (2014) Diversity patterns, ecology and biological activities of fungal communities associated with the endemic macroalga across the Antarctic Peninsula. Microbial Ecol 67:775–787

    Article  Google Scholar 

  • Gamagae SU, Sivakumar AD, Wilson WRS, Wijesundera RLC (2003) Use of sodium bicarbonate and Candida oleophila to control anthracnose in papaya during storage. Crop Prot 22:775–779

    Article  Google Scholar 

  • Godinho VM, Furbino LE, Santiago IF, Pellizzari FM, Yokoya NS, Pupo D, Rosa LH (2013) Diversity and bioprospecting of fungal communities associated with endemic and cold-adapted macroalgae in Antarctica. ISME J 7:1434–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Montiel LG, Larralde-Corona CP, Lopez-Aburto MG, Ocho JL, Ascencio-Valle F (2010) Characterization of yeast Debaryomyces hansenii for the biological control of blue mold decay of Mexican lemon. CyTA- J Food 8:49–56

    Article  CAS  Google Scholar 

  • Hernandez-Montiel LG, Gutierrez-Perez ED, Murillo-Amador B, Vero S, Chiquito-Contreras RG, Rincon-Enriquez G (2018) Mechanisms employed by Debaryomyces hansenii in biological control of anthracnose disease on papaya fruit. Postharvest Biol Technol 139:31–37

    Article  Google Scholar 

  • Hu H, Yan F, Wilson C, Shen Q, Zheng X (2015) The ability of a cold-adapted Rhodotorula mucilaginosa strain from Tibet to control blue mold in pear fruit. Antonie Leeuwenhoek 108:1391–1404

    Article  CAS  PubMed  Google Scholar 

  • Hu H, WIsniewski ME, Abdelfattah A, Zheng X (2017) Biocontrol activity of a cold-adapted yeast from Tibet against gray mold in cherry tomato and its action mechanism. Extremophiles 21:789–803

    Article  PubMed  Google Scholar 

  • Hutchison ML, Tester MA, Gross DC (1995) Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant pathogen interaction. Mol Plant Microbe Interact 8:610–620

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Ver Phytopathol 40:411–441

    Article  CAS  Google Scholar 

  • Janisiewicz WJ, Conway WS, Glenn DM, Sams CE (1998) Integrating biological control and calcium treatment for controlling postharvest decay of apple. HortScience 33:105–109

    CAS  Google Scholar 

  • Janisiewicz WJ, Tworkoski TJ, Sharer C (2000) Characterizing the mechanism of biological control of postharvest diseases on fruits with a simple method to study competition for nutrients. Phytopathology 90:1196–1200

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz WJ, Pimenta RS, Jurick WM II (2011) A novel method for selecting antagonists against postharvest fruit decays originating from latent infections. Biol Control 59:384–389

    Article  Google Scholar 

  • Jijakli MH, Lepoivre P (1998) Characterization of na exo-β-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology 88:335–343

    Article  CAS  PubMed  Google Scholar 

  • Karabulut OA, Baykal N (2004) Integrated control of postharvest diseases of peaches with a yeast antagonist, hot water and modified atmosphere packaging. Crop Protection 23:431–435

    Article  Google Scholar 

  • Kupper KC, Cervantes ALL, Klein MN, Silva AC (2013) Avaliação de microrganismos antagônicos, Saccharomyces cerevisiae e Bacillus subtilis para o controle de Penicillium digitatum. Rev Bras Frutic 35:425–436

    Article  Google Scholar 

  • Kurtzmam CP, Fell JW, Boekhout T (2011) The yeast, a taxonomic study, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Kurtzman CP, Droby S (2001) Metschnikowia fructicola, a new ascosporic yeast with potential for biocontrol of postharvest fruit rots. Syst Appl Microbiol 24:395–399

    Article  CAS  PubMed  Google Scholar 

  • Lachance MA, Starmer WT (1998) Ecology and yeasts. In: Kurtzman CP, Fell JW (eds) The yeasts, a taxonomy study, 4th edn, Amsterdam, Elsevier, pp 21–30

    Google Scholar 

  • Lahlali R, Serrhini MN, Jijakli MH (2004) Efficacy assessment of Candida oleophila (strain O) and Pichia anomala (strain K) against major postharvest diseases of citrus fruit in Morocco. Commun Agric Appl Biol Sci 69:601–609

    CAS  PubMed  Google Scholar 

  • Lahlali R, Serrhini MN, Jijakli MH (2005) Development of a biological control method against ostharvest diseases of citrus fruit. Commun Agric Appl Biol Sci 70(3):47–58

    CAS  PubMed  Google Scholar 

  • Lee G, Lee S-H, Kim KM, Ryua C-M (2017) Foliar application of the leaf-colonizing yeast Pseudozyma churashimaensis elicits systemic defense of pepper against bacterial and viral pathogens. Scientific Rep 7:39432

    Article  CAS  Google Scholar 

  • Lima G, Ippolito A, Nigro F, Salermo M (1997) Effective ness of Aureobasidium pullulans and Candida oleophila against postharvest strawberry rots. Postharvest Biol Technol 10:169–178

    Article  Google Scholar 

  • Lima LHC, Marco JL, Felix CR (2000) Enzimas hidrolíticas envolvidas no controle biológico por micoparasitismo. In: Melo IS, Azevedo JL (Org.). Controle biológico. Jaguariúna: Embrapa Meio Ambiente 2:263–304

    Google Scholar 

  • Lima G, Sanzani SM, Curtis D, Ippolito F (2015) Biological control of postharvest diseases. In: Golding J (ed) Wills, R.B.H. CRC Press, Advances in postharvest fruit and vegetable technology, pp 65–81

    Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Sui Y, Wisniewski M, Droby M, Liu Y (2013) Review: Utilization of antagonistic yeasts to manage postharvest fungal diseases of fruit. Int J Food Microbiol 167:153–160

    Article  PubMed  Google Scholar 

  • Lopes MR, Klein MN, Ferraz LP, da Silva AC, Kupper KC (2015) Saccharomyces cerevisiae: a novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Microbiol Res 175:93–99

    Article  PubMed  Google Scholar 

  • Lutz MC, Lopes CA, Sosa MC, Sangorrin MP (2012) A new improved strategy for the selection of cold-adapted antagonista yeasts to control postharvest pear diseases. Biocontrol Sci Technol 22:465–1483

    Article  Google Scholar 

  • Mandal G, Singh D, Sharma RR (2007) Effect of hot water treatment and biocontrol agent (Debaryomyces hansenii) on shelf life of peach. Indian J Hortic 64:25–28

    Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361

    Article  PubMed  Google Scholar 

  • Masih EI, Slezack-deschaumes S, Marmaras I, Ait-barka E, Vernet G, Charpentier C, Adholeya A, Paul B (2001) Characterization of the yeast Pichia membranifaciens and its possible use in the biological control of Botrytis cinerea. FEMS Microbiol Letters 202:227–232

    Article  CAS  Google Scholar 

  • McLaughlin RJ, Wilson CL, Chalutz E, Kurtzman WF, Osman SF (1990) Characterization and reclassification of yeasts used for biological control of postharvest diseases of fruit and vegetables. Appl Environ Microbiol 56:3583–3586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrotra NK, Sharma N, Ghosh NR, Nigam M (1996) Biological control of green and blue mould disease of citrus fruit by yeast. Indian Phytopatol 49:350–354

    Google Scholar 

  • Mendéz SV, Mondino P (1999) Control biologico postcosecha en Uraguay. Horticultura Internacional 26:1999

    Google Scholar 

  • Mercier J, Lindow SE (2000) Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Appl Environ Microbiol 66:369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MW (1979) Yeasts in food spoilage: an update. Food Technol 33:76–80

    Google Scholar 

  • Mondino P, Vero V (2006) Control Biologico de Patogenos de Plantas. Facultad de Agronomía- Unidad de Educación Permanente, Uruguay, p 320

    Google Scholar 

  • Morales H, Sanchis V, Usall J, Ramos AJ, Marín S (2008) Effect of biocontrol agents Candida sake and Pantoea agglomerans on Penicillium expansum growth and patulin accumulation in apples. Int J Food Microbiol 122:61–67

    Article  PubMed  Google Scholar 

  • Morales H, Marín S, Ramos JA, Sanchis V (2010) Influence of post-harvest technologies applied during cold storage of apples in Penicillium expansum growth and patulin accumulation: A review. Food Control 21:953–962

    Article  CAS  Google Scholar 

  • Nally MC, Pesce VM, Maturano YP, Munõz CJ, Combina M, Toro ME, Castellanos de Figueroa LI, Vazquez F (2012) Biocontrol of Botrytis cinerea in table grapes by nonpathogenic indigenous Saccharomyces cerevisiae yeasts isolated from viticultural environments in Argentina. Postharvest Biol Technol 64:40–48

    Article  Google Scholar 

  • Nascimento TL, Oki Y, Lima DMM, Almeida-Cortez JS, Fernandes GW, Souza-Motta CM (2015) Biodiversity of endophytic fungi in different leaf ages of Colotropis procera and their antimicrobial activity. Fungal Ecol 14:79–86

    Article  Google Scholar 

  • Nunes CA (2011) Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133:181–196

    Article  Google Scholar 

  • Nunes C, Usall J, Teixidó N, Viñas I (2001) Biological control of postharvest pear diseases using a bacterium Pantoea agglomerans (CPA-2). Int J Food Microbiol 70:53–61

    Article  CAS  PubMed  Google Scholar 

  • Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistance of Antarctic black fungi and cryptoendolithic communities to simulated space and Martian conditions. Stud Mycol 61:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phaff HJ, Starmer WT (1987) Yeasts associated with plants, insects and soils. The yeasts. London: Academic Press pp. 123–180

    Google Scholar 

  • Pimenta RS, Silva FL, Silva JFM, Morais PB, Braga DT, Rosa CA, Corrêa C Jr (2008) Biological control of Penicillium italicum, P. digitatum and P. expansum by the predacious yeast Saccharomycopsis schoenii on oranges. Braz J Microbiol 39:85–90

    Article  PubMed  PubMed Central  Google Scholar 

  • Pimenta RS, Morais PB, Rosa CA, CORRÊA J (2009) Utilization of yeasts in biological control programs. In: Yeast biotechnology: diversity and applications. Springer Science, Berlín, pp 200–212

    Chapter  Google Scholar 

  • Pimenta R, Silva JFM, Buyer JS, Janisiewicz WJ (2012) Endophytic fungi from plums (Prunus domestica) and their antifungal activity against Monilinia fructicola. J Food Protect 75:1883–1889

    Article  CAS  Google Scholar 

  • Plaza P, Usall J, Teixidó N, Viñas I (2003) Effect of water activity and temperature on germination and growth of Penicillium digitatum, P. italicum and Geotrichum candidum. J Appl Microbiol 94:549–554

    Article  CAS  PubMed  Google Scholar 

  • Robiglio A, Sosa MC, Lutz MC, Lopes CA, Sangorrín MP (2011) Yeast biocontrol of fungal spoilage of pears stored at low temperature. Int J Food Microbiol 147:211–216

    Article  PubMed  Google Scholar 

  • Rosa LH, Almeida Vieira M de L, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiol 73:178–189

    CAS  Google Scholar 

  • Rosa-Magri MM, Tauk-Tornisielo SM, Ceccato-Antonini SR (2011) Bioprospection of yeasts as biocontrol agents against phytopathogenic molds. Braz Arch Biol Technol 54:1–5

    Article  Google Scholar 

  • Ruisi S, Barreca D, Selbmann L, Zucconi L, Onofri S (2007) Fungi in Antarctica. Rev Environ Sci Biotechnol 6:127–141

    Article  Google Scholar 

  • Saligkarias ID, Gravanis FT, Epton HAS (2002) Biological control of Botrytis cinerea on tomato plants by the use of epiphytic yeasts Candida guilliermondii strains 101 and US 7 and Candida oleophila strain I-182: in vivo studies. Biological Control 25:143–150

    Article  CAS  Google Scholar 

  • Sangorrín MP, Lopes CA, Vero S, Wisniewski M (2014) Cold-adapted yeasts as biocontrol agents: biodiversity, adaptation strategies and biocontrol potential In: Buzzini P, Margesin R (eds) Cold-adapted yeasts. Springer, Berlin, Heidelberg pp. 441–464

    Google Scholar 

  • Santos A, Sánchez A, Marquina D (2004) Yeasts as biological agents to control Botrytis cinerea. Microbiolo Res 159:331–338

    Article  CAS  Google Scholar 

  • Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Sharma N, Sharma S, Prabha B (2012) Postharvest biocontrol – new concepts and application. In: Venkateswarlu B, Shanker A, Shanker C, Maheswari M (eds) Crop stress and its management: perspectives and strategies. Springer, Dordrecht

    Google Scholar 

  • Singh D (2002) Bioefficacy of Debaryomyces hansenii on the incidence and growth of Penicillium italicum on Kinnow fruit in combination with oil and wax emulsions. Ann Plant Protect Sci 10:72–276

    Google Scholar 

  • Sommer NF (1985) Role of controlled environments in suppression of postharvest diseases. Can J Plant Pathol 7:331–339

    Article  Google Scholar 

  • Spadaro D, Droby S (2016) Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol 47:39–49

    Article  CAS  Google Scholar 

  • Spadaro D, Vola R, Piano S, Gullino ML (2002) Mechanisms of action and efficacy of four isolates of the yeast Metschnikowia pulcherrima active against postharvest pathogens on apples. Postharvest Biol Technol 24:123–134

    Article  Google Scholar 

  • Spadaro D, Garibaldi A, Gullino ML (2004) Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application. Postharvest Biol Technol 33:141–151

    Article  CAS  Google Scholar 

  • Sriram S, Poornachanddra S (2013) Biological control of post-harvest mango fruit rot caused by Colletotrichum gloeosporioides and Diplodia natalensis with Candida tropicalis and Alcaligenes faecalis. Indian Phytopathol 66:375–380

    Google Scholar 

  • Sukorini H, Sangchote S, Khewkhom N (2013) Control of postharvest green mold of citrus fruit with yeasts, medicinal plants, and their combination. Postharvest Biol Technol 79:24–31

    Article  Google Scholar 

  • Tian SP, Fan Q, Xu Y, Qin GZ, Liu HB (2002) Effect of biocontrol antagonists applied in combination with calcium on the control of postharvest diseases in different fruit. Bull OILB/SROP 25:193–196

    Google Scholar 

  • Torres R, Teixido N, Vinas I, Mari M, Casalini L, Giraud M, Usall J (2006) Efficacy of Candida sake CPA-1 formulation for controlling Penicillium expansum decay on pome fruit from different Mediterranean regions. J Food Protect 69:2703–2711

    Article  CAS  Google Scholar 

  • Troncoso-Rojas R, Tiznado-Hernández ME (2014) Alternaria alternata (Black Rot, Black Spot). In: Postharvest decay, pp 147–187

    Chapter  Google Scholar 

  • Usall J, Teixido N, Torres R, Ochoa de Eribe X, Vinas I (2001) Pilot tests of Candida sake (CPA-1) applications to control postharvest blue mold on apple fruit. Postharvest Biol Technol 21:147–156

    Article  Google Scholar 

  • Usall J, Teixidó N, Abadias M, Torres R, Cañamas T, Viñas I (2009) Improving formulation of biocontrol agents manipulating production process. In: Prusky D, Gullino M (eds) Postharvest pathology. Plant pathology in the 21st century (contributions to the 9th international congress), vol 2. Springer, Dordrecht

    Google Scholar 

  • Usall J, Torres R, Teixidó N (2016a) Biological control of postharvest diseases on fruit: a suitable alternative. Curr Opin Food Sci 11:51–55

    Article  Google Scholar 

  • Usall J, Ippolito A, Sisquella M, Neri F (2016b) Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biol Technol 122:30–40

    Article  Google Scholar 

  • Vero S, Mondino P, Burgueño J, Soubes M, Wisniewski M (2002) Characterization of biocontrol activity of two yeast strains from Uruguay against blue mold of apple. Postharvest Biol Technol 26:91–98

    Article  Google Scholar 

  • Vero S, Garmendia G, Belén MB, Garat MF, Wisniewski M (2009) Aureobasidium pullulans as a biocontrol agent of postharvest pathogens of apples in Uruguay. Biocontrol Sci Technol 19:1033–1049

    Article  Google Scholar 

  • Vero S, Garmendia G, Garat MF, De Aurrecoechea I, Wisniewski M (2011) Cystofilibasidium infirmominiatum as a biocontrol agent of postharvest diseases on apples and citrus. Acta Hortic 905:169–180

    Article  CAS  Google Scholar 

  • Vero S, Garmendia G, Gonzalez MB, Bentacur O, Wisniewski M (2013) Evaluation of yeasts obtained from Antarctic soil samples as biocontrol agents for the management of postharvest diseases of apple (Malus X domestica). FEMS Yeast Res 13:189–199

    Article  CAS  PubMed  Google Scholar 

  • Vinas I, Usall J, Teixido N, Fons E, Ochoa-de-Eribe J (1996) Successful biological control of the major postharvest diseases on apples and pears with a new strain of Candida sake. British Crop Protection Conference, Pests and Diseases 6:603–608

    Google Scholar 

  • Vinas I, Usall J, Teixido N, Sanchis V (1998) Biological control of major postharvest pathogens on apple with Candida sake. Int J Food Microbiol 40:9–16

    Article  CAS  PubMed  Google Scholar 

  • Wang YF, Bao YH, Shen DH, Feng W, Zhang J, Zheng XD (2008) Biocontrol of Alternaria alternata on cherry Proposed definition related to induced disease tomato fruit by use of marine yeast resistance Rhodosporidium paludigenum Fell and Tallman. Int J Food Microbiol 123:234–239

    Article  PubMed  Google Scholar 

  • Wang YF, Yu T, Xia JD, Yu DS, Wang J, Zheng XD (2010a) Biocontrol of postharvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenum. Biol Control 53:178–182

    Article  Google Scholar 

  • Wang Y, Wang P, Xia J, Yu T, Lou B, Wang J, Zheng XD (2010b) Effect of water activity on stress tolerance and biocontrol activity in antagonistic yeast Rhodosporidium paludigenum. Int J Food Microbiol 143:103–108

    Article  CAS  PubMed  Google Scholar 

  • Warren J, Dias A (2001) A two- pollinator model for the evolution of floral complexity. Evol Ecol 15:157–166

    Article  Google Scholar 

  • Wilson C (2013) Establishment of a world food preservation center. Agric Food Secur 2:1–4

    Article  Google Scholar 

  • Wilson CL, Wisniewski ME, Droby S, Chalutz E (1993) A selection strategy for microbial antagonists to control postharvest diseases of fruits and vegetables. Sci Hortic 53:183–189

    Article  Google Scholar 

  • Wisniewski M, Wilson CL, Hershberger W (1989) Characterization of inhibition of Rhizopus stolonifer germination and growth by Enterobacter cloacae. Plant Dis 81:204–210

    Google Scholar 

  • Wisniewski M, Droby S, Norelli J, Liu J, Schena L (2016) Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biol Technol 122:3–10

    Article  Google Scholar 

  • Yergeau E, Kowalchuk GA (2008) Responses of Antarctic soil microbial communities and associated functions to temperature and freeze–thaw cycle frequency. Environ Microbiol 10:2223–2235

    Article  PubMed  Google Scholar 

  • Zhang H, Zheng XD, Yu T (2007a) Biological control of postharvest diseases of peach with Cryptococcus laurentii. Food Control 18:287–291

    Article  CAS  Google Scholar 

  • Zhang H, Zheng X, Wang L, Li S, Liu R (2007b) Effect of antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries. J Food Engin 78:281–287

    Article  CAS  Google Scholar 

  • Zhang H, Wang L, Dong Y, Jiang S, Zhang H, Zheng X (2008) Control of postharvest pear diseases using Rhodotorula glutinis and its effects on postharvest quality parameters. Int J Food Microbiol 126:167–171

    Article  PubMed  Google Scholar 

  • Zhang H, Wang L, Ma L, Dong Y, Jiang S, Xu B, Zheng X (2009) Biocontrol of major postharvest pathogens on apple using Rhodotorula glutinis and its effects on postharvest quality parameters. Biol Control 48:79–83

    Article  Google Scholar 

  • Zhang D, Spadaro D, Garibaldi A, Gullino ML (2010) Efficacy of the antagonist Aureobasidium pullulans PL5 against postharvest pathogens of peach, apple and plum and its modes of action. Biol Control 54:172–180

    Article  Google Scholar 

  • Zhang H, Yang Q, Lin H, Ren X, Zhao X, Hou J (2013) Phytic acid enhances biocontrol efficacy of Rhodotorula mucilaginosa against postharvest gray mold spoilage and natural spoilage of strawberries. Food Sci Technol 52:110–115

    CAS  Google Scholar 

  • Zhang T, Zhang YQ, Liu HY, Su J, Zhao LX, Yu LY (2014) Cryptococcus fildesensis sp. nov., a psychrophilic basidiomycetous yeast isolated from Antarctic moss. Intl J Syst Evol Microbiol 64:675–679

    Article  Google Scholar 

  • Zhao Y, Tu K, Shao X, Jing W, Su Z (2008) Effects of the yeast Pichia guilliermondii against Rhizopus nigricans on tomato fruit. Postharvest Biol Technol 49:113–120

    Article  Google Scholar 

  • Zhimo VY, Bhutia DD, Saha J (2016) Biological control of post harvest fruit diseases using antagonistic yeasts in India. J Plant Pathol 98:275–283

    Google Scholar 

  • Zhou Y, Deng L, Zeng K (2014) Enhancement of biocontrol efficacy of Pichia membranaefaciens by hot water treatment in postharvest diseases of citrus fruit. Crop Prot 63:89–96

    Article  Google Scholar 

  • Zoffoli JP, Latorre BA (2011) Table grape (Vitis vinifera L.). In: Yahia EM (ed) Postharvest biology and technology of tropical and subtropical fruits. V. 3, Coconut to Mango. Woodhead Publishing Limited, Cambridge, pp 179–214

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Sanzio Pimenta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ferreira, E.M.S., Resende, D.A., Vero, S., Pimenta, R.S. (2019). The Use of Psychrophilic Antarctic Yeast in the Biological Control of Post-harvest Diseases of Fruits Stored at Low Temperatures. In: Rosa, L. (eds) Fungi of Antarctica. Springer, Cham. https://doi.org/10.1007/978-3-030-18367-7_11

Download citation

Publish with us

Policies and ethics