Skip to main content

Combinatorial Designing of Novel Lead Molecules Towards the Putative Drug Targets of Extreme Drug-Resistant Mycobacterium tuberculosis: A Future Insight for Molecular Medicine

  • Chapter
  • First Online:
Essentials of Bioinformatics, Volume II

Abstract

Mycobacterium tuberculosis (Mtb) is one of the notorious pathogens which has led to high mortality rates and demonstrated extreme drug resistance (XDR) to most of the conventional drugs and become a potential threat to public health worldwide. Hence, there is high demand and need to screen novel drug targets and alternate lead molecules that can be used as starting point of developing potential therapies against this pathogen. The proposed chapter illustrates the application of computer-aided virtual screening for screening novel and probable drug targets of Mycobacterium tuberculosis and identification of novel lead molecules as therapeutic remedies by computational biology tools and approaches. The chapter initially focuses on the recent perspectives on XDR-Mtb, major metabolic pathways responsible for the pathogenesis, conventional therapies and associated drug resistance and challenges and scope of computational drug screening. This chapter further illustrates potential drug targets, various approaches for the prediction of these targets, molecular modelling works, screening of novel lead molecules by computational virtual screening with ideal drug likeliness and ADMET (absorption, distribution, metabolism, excretion and toxicity) features, application of docking studies and simulation. Thus, the present chapter provides latest developments in molecular medicine and computational drug discovery to combat tuberculosis (TB) and thereby open new paradigm for the development of novel leads against potential drug targets for XDR-Mtb.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  • Agyeman AA, Ofori-Asenso R (2016) Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 15(1):41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alderwick LJ, Seidel M, Sahm H, Besra GS, Eggeling L (2006) Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J Biol Chem 281(23):15653–15661

    Article  CAS  PubMed  Google Scholar 

  • Almeida-Da-Silva PE, Palomino JC (2011) Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother 66(7):1417–1430

    Article  CAS  PubMed  Google Scholar 

  • Amir A, Rana K, Arya A, Kapoor N, Kumar H, Siddiqui MA (2014) Mycobacterium tuberculosis H37Rv: in silico drug targets identification by metabolic pathways analysis. Int J Evol Biol 2014:284170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anastasio TJ (2017) Editorial: computational and experimental approaches in multi-target pharmacology. Front Pharmacol 8:443

    Article  PubMed  PubMed Central  Google Scholar 

  • Averbukh I, Ben-Zvi D, Mishra S, Barkai N (2014) Scaling morphogen gradients during tissue growth by a cell division rule. Development 141(10):2150–2156

    Article  CAS  PubMed  Google Scholar 

  • Ayaz F, Küçükboyacı N, Demirci B (2017) Chemical composition and antimicrobial activity of the essential oil of Conyza canadensis (L.) cronquist from Turkey. J Essent Oil Res 29(4):336–343

    Article  CAS  Google Scholar 

  • Baek M, Shin WH, Chung HW, Seok C (2017) GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking. J Comput Aided Mol Des 31(7):653–666

    Article  CAS  PubMed  Google Scholar 

  • Baldi A (2010) Computational approaches for drug design and discovery: an overview. Sys Rev Pharm 1(1):95–105

    Article  CAS  Google Scholar 

  • Bashiri G, Rehan AM, Sreebhavan S, Baker HM, Baker EN, Squire CJ (2016) Elongation of the poly-γ-glutamate tail of F420 requires both domains of the F420:γ-glutamyl ligase (FbiB) of Mycobacterium tuberculosis. J Biol Chem 291(13):6882–6894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates PA, Kelley LA, MacCallum RM, Sternberg MJ (2001) Enhancement of protein modeling by human intervention in applying the automatic programs 3D-JIGSAW and 3D-PSSM. Proteins 5:39–46

    Article  PubMed  CAS  Google Scholar 

  • Baugh L, Phan I, Begley DW, Clifton MC, Armour B, Dranow DM, Taylor BM, Muruthi MM, Abendroth J, Fairman JW, Fox D 3rd, Dieterich SH, Staker BL, Gardberg AS, Choi R, Hewitt SN, Napuli AJ, Myers J, Barrett LK, Zhang Y, Ferrell M, Mundt E, Thompkins K, Tran N, Lyons-Abbott S, Abramov A, Sekar A, Serbzhinskiy D, Lorimer D, Buchko GW, Stacy R, Stewart LJ, Edwards TE, Van Voorhis WC, Myler PJ (2015) Increasing the structural coverage of tuberculosis drug targets. Tuberculosis (Edinb) 95(2):142–148

    Article  CAS  Google Scholar 

  • Belanger AE, Besra GS, Ford ME, Mikusová K, Belisle JT, Brennan PJ, Inamine JM (1996) The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A 93(21):11919–11924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell LCK, Noursadeghi M (2018) Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nat Rev Microbiol 16(2):80–90

    Article  CAS  PubMed  Google Scholar 

  • Berrada ZL, Lin SY, Rodwell TC, Nguyen D, Schecter GF, Pham L, Janda JM, Elmaraachli W, Catanzaro A, Desmond E (2016) Rifabutin and rifampin resistance levels and associated rpoB mutations in clinical isolates of Mycobacterium tuberculosis complex. Diagn Microbiol Infect Dis 85(2):177–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL (2012) Quantifying the chemical beauty of drugs. Nat Chem 4(2):90–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A (2013) CABS-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res 41(Web Server issue):W406–W411

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6(1):61–78

    Article  CAS  PubMed  Google Scholar 

  • Bradley P, Misura KM, Baker D (2005) Toward high-resolution de novo structure prediction for small proteins. Science 309(5742):1868–1871

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Brooks CL, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruning JB, Murillo AC, Chacon O, Barletta RG, Sacchettini JC (2011) Structure of the Mycobacterium tuberculosis D-alanine:D-alanine ligase, a target of the antituberculosis drug D-cycloserine. Antimicrob Agents Chemother 55(1):291–301

    Article  CAS  PubMed  Google Scholar 

  • Brylinski M, Skolnick J (2008) Q-Dock: low-resolution flexible ligand docking with pocket-specific threading restraints. J Biol Chem 29(10):1574–1588

    CAS  Google Scholar 

  • Burkhard P, Taylor P, Walkinshaw MD (1998) An example of a protein ligand found by database mining: description of the docking method and its verification by a 2.3 A X-ray structure of a thrombinligand complex. J Mol Biol 277(2):449–466

    Article  CAS  PubMed  Google Scholar 

  • Bushra E, Adem J (2016) Mycobacterial metabolic pathways as drug targets: a review. Int J Microbiol Res 7(3):74–87

    CAS  Google Scholar 

  • Case DA, Cerutti DS, Cheatham TE, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW, Greene D, Homeyer N, Izadi S, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein D, Merz KM, Monard G, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Simmerling CL, Botello-Smith WM, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA (2017) AMBER 2017. University of California, San Francisco

    Google Scholar 

  • Centers for Disease Control and Prevention (CDC). (2018) https://www.cdc.gov/tb/topic/research/default.htm. Accessed 10 Apr 2018

  • Chambers HF, Turner J, Schecter GF, Kawamura M, Hopewell PC (2005) Imipenem for treatment of tuberculosis in mice and humans. Antimicrob Agents Chemother 49(7):2816–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra N (2011) Computational approaches for drug target identification in pathogenic diseases. Expert Opin Drug Discov 6(10):975–979

    Article  CAS  PubMed  Google Scholar 

  • Chang DT, Oyang YJ, Lin JH (2005) MEDock: a web server for efficient prediction of ligand binding sites based on a novel optimization algorithm. Nucleic Acids Res 33(Web Server issue):W233–W238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary KK, Mishra N (2016) A review on molecular docking: novel tool for drug discovery. JSM Chem 4(3):1029

    Google Scholar 

  • Chen HM, Liu BF, Huang HL, Hwang SF, Ho SY (2007) SODOCK: swarm optimization for highly flexible protein-ligand docking. J Biol Chem 28(2):612–623

    CAS  Google Scholar 

  • Chen J, Zhang S, Cui P, Shi W, Zhang W, Zhang Y (2017) Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother 72(12):3272–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14(1):133–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinsembu KC (2016) Tuberculosis and nature’s pharmacy of putative anti-tuberculosis agents. Acta Trop 153:46–56

    Article  CAS  PubMed  Google Scholar 

  • Choi V (2005) YUCCA: an efficient algorithm for small-molecule docking. Chem Biodivers 2(11):1517–1524

    Article  CAS  PubMed  Google Scholar 

  • Chung JY, Cho SJ, Hah JM (2011) A python-based docking program utilizing a receptor bound ligand shape: PythDock. Arch Pharm Res 34(9):1451–1458

    Article  CAS  PubMed  Google Scholar 

  • Clark KP (1995) Flexible ligand docking without parameter adjustment across four ligand-receptor complexes. J Comput Chem 16:1210–1226

    Article  CAS  Google Scholar 

  • Clark DE (2003) In-silico prediction of blood–brain barrier permeation. Drug Discov Today 8(20):927–933

    Article  CAS  PubMed  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544

    Article  CAS  PubMed  Google Scholar 

  • Coll F, Phelan J, Hill-Cawthorne GA, Nair MB, Mallard K, Ali S, Abdallah AM, Alghamdi S, Alsomali M, Ahmed AO, Portelli S, Oppong Y, Alves A, Bessa TB, Campino S, Caws M, Chatterjee A, Crampin AC, Dheda K, Furnham N, Glynn JR, Grandjean L, Minh-Ha D, Hasan R, Hasan Z, Hibberd ML, Joloba M, Jones-López EC, Matsumoto T, Miranda A, Moore DJ, Mocillo N, Panaiotov S, Parkhill J, Penha C, Perdigão J, Portugal I, Rchiad Z, Robledo J, Sheen P, Shesha NT, Sirgel FA, Sola C, Oliveira Sousa E, Streicher EM, Helden PV, Viveiros M, Warren RM, McNerney R, Pain A, Clark TG (2018) Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis. Nat Genet 50(2):307–316

    Article  PubMed  Google Scholar 

  • D’Ambrosio L, Centis R, Tiberi S, Tadolini M, Dalcolmo M, Rendon A, Esposito S, Migliori GB (2017) Delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis in children: a systematic review. J Thorac Dis 9(7):2093–2101

    Article  PubMed  PubMed Central  Google Scholar 

  • Dar AM, Mir S (2017) Molecular docking: approaches, types, applications and basic challenges. J Anal Bioanal Tech 8:356

    Article  CAS  Google Scholar 

  • de-Mendonça JD, Ely F, Palma MS, Frazzon J, Basso LA, Santos DS (2007) Functional characterization by genetic complementation of aroB-encoded dehydroquinate synthase from Mycobacterium tuberculosis H37Rv and its heterologous expression and purification. J Bacteriol 189(17):6246–6252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de-Ruyck J, Brysbaert G, Blossey R, Lensink MF (2016) Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem 9:1–11

    PubMed  PubMed Central  Google Scholar 

  • De-Vivo M, Masetti M, Bottegoni G, Cavalli A (2016) Role of molecular dynamics and related methods in drug discovery. J Med Chem 59(9):4035–4061

    Article  CAS  PubMed  Google Scholar 

  • Dheda K, Chang KC, Guglielmetti L, Furin J, Schaaf HS, Chesov D, Esmail A, Lange C (2017) Clinical management of adults and children with multidrug-resistant and extensively drug-resistant tuberculosis. Clin Microbiol Infect 23(3):131–140

    Article  CAS  PubMed  Google Scholar 

  • Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737

    Article  CAS  PubMed  Google Scholar 

  • Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K (2018) Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother. https://doi.org/10.1093/jac/dkx506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34(Web Server issue):W116–W118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engin HB, Gursoy A, Nussinov R, Keskin O (2014) Network-based strategies can help mono- and poly-pharmacology drug discovery: a systems biology view. Curr Pharm Des 20(8):1201–1207

    Article  CAS  PubMed  Google Scholar 

  • Errey JC, Blanchard JS (2005) Functional characterization of a novel ArgA from Mycobacterium tuberculosis. J Bacteriol 187(9):3039–3044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Center for Disease Prevention and Control (ECDC). (2018) https://ecdc.europa.eu/en/publications-data/tuberculosis-surveillance-and-monitoring-europe-2018. Accessed 10 Apr 2018

  • Ewing TJA, Makino S, Skillman AG, Kuntz ID (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15(5):411–428

    Article  CAS  PubMed  Google Scholar 

  • Fakhar Z, Naiker S, Alves CN, Govender T, Maguire GE, Lameira J, Lamichhane G, Kruger HG, Honarparvar B (2016) A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis. J Biomol Struct Dyn 34(11):2399–2417

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Schneidman-Duhovny D, Irwin JJ, Dong G, Shoichet BK, Sali A (2011) Statistical potential for modeling and ranking of protein–ligand interactions. J Chem Inf Model 51(12):3078–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraris DM, Spallek R, Oehlmann W, Singh M, Rizzi M (2015) Structures of citrate synthase and malate dehydrogenase of Mycobacterium tuberculosis. Proteins 83(2):389–394

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20(7):13384–13421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Field SK (2015) Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis 6(4):170–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, Hickey E, Kolonay JF, Nelson WC, Umayam LA, Ermolaeva M, Salzberg SL, Delcher A, Utterback T, Weidman J, Khouri H, Gill J, Mikula A, Bishai W, Jacobs WR Jr, Venter JC, Fraser CM (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184(19):5479–5490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrellad MA, Klepp LI, Gioffré A, Sabio-y-García J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F (2013) Virulence factors of the Mycobacterium tuberculosis complex. Virulence 4(1):3–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabb HA, Jackson RM, Sternberg MJ (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 272(1):106–120

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Li H, Zhang H, Liu X, Kang L, Luo X, Zhu W, Chen K, Wang X, Jiang H (2008) PDTD: a web-accessible protein database for drug target identification. BMC Bioinformatics 9:104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaudreault F, Najmanovich RJ (2015) FlexAID: revisiting docking on non-native-complex structures. J Chem Inf Model 55(7):1323–1336

    Article  CAS  PubMed  Google Scholar 

  • Geromichalos GD (2012) Virtual screening strategies and application in drug designing. Drug Des 2:e109

    Article  Google Scholar 

  • Ghose AK, Herbertz T, Salvino JM, Mallamo JP (2006) Knowledge-based chemoinformatic approaches to drug discovery. Drug Discov Today 11(23–24):1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Gonzalo X, Drobniewski F (2013) Is there a place for β-lactams in the treatment of multidrug-resistant/extensively drug-resistant tuberculosis? Synergy between meropenem and amoxicillin/clavulanate. J Antimicrob Chemother 68(2):366–369

    Article  CAS  PubMed  Google Scholar 

  • Graham DE, Xu H, White RH (2002) Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes. J Biol Chem 277(16):13421–13429

    Article  CAS  PubMed  Google Scholar 

  • Grochowski LL, Xu H, White RH (2008) Identification and characterization of the 2-phospho-L-lactate guanylyltransferase involved in coenzyme F420 biosynthesis. Biochemistry 47(9):3033–3037

    Article  CAS  PubMed  Google Scholar 

  • Grosdidier A, Zoete V, Michielin O (2007) EADock: docking of small molecules into protein active sites with a multi objective evolutionary optimization. Proteins 67(4):1010–1025

    Article  CAS  PubMed  Google Scholar 

  • Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39.(Web Server issue:W270–W277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Gandhimathi A, Sharma P, Jayaram B (2007) ParDOCK: an all atom energy based Monte Carlo docking protocol for protein-ligand complexes. Protein Pept Lett 14(7):632–646

    Article  CAS  PubMed  Google Scholar 

  • Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Article  CAS  PubMed  Google Scholar 

  • Hallam SJ, Putnam N, Preston CM, Detter JC, Rokhsar D, Richardson PM, DeLong EF (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305(5689):1457–1462

    Article  CAS  PubMed  Google Scholar 

  • Hart TN, Read RJ (1992) A multiple-start Monte Carlo docking method. Proteins 13(3):206–222

    Article  CAS  PubMed  Google Scholar 

  • Hazai E, Kovács S, Demkó L, Bikádi Z (2009) DockingServer: molecular docking calculations online. Acta Pharm Hung 79(1):17–21

    PubMed  Google Scholar 

  • Huang B (2009) MetaPocket: a meta approach to improve protein ligand binding site prediction. OMICS 13(4):325–330

    Article  CAS  PubMed  Google Scholar 

  • Huang SY, Li M, Wang J, Pan Y (2016) HybridDock: A hybrid protein-ligand docking protocol integrating protein- and ligand-based approaches. J Chem Inf Model 56(6):1078–1087

    Article  CAS  PubMed  Google Scholar 

  • Hung CL, Chen CC (2014) Computational approaches for drug discovery. Drug Dev Res 75(6):412–418

    Article  CAS  PubMed  Google Scholar 

  • Irwin JJ, Shoichet BK, Mysinger MM, Huang N, Colizzi F, Wassam P, Cao Y (2009) Automated docking screens: a feasibility study. J Med Chem 52(18):5712–5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jabeen K, Shakoor S, Hasan R (2015) Fluoroquinolone-resistant tuberculosis: implications in settings with weak healthcare systems. Int J Infect Dis 32:118–123

    Article  PubMed  Google Scholar 

  • Janardhan S, John L, Prasanthi M, Poroikov V, Narahari-Sastry G (2017) A QSAR and molecular modelling study towards new lead finding: polypharmacological approach to Mycobacterium tuberculosis. SAR QSAR Environ Res 28(10):815–832

    Article  CAS  PubMed  Google Scholar 

  • Jiang F, Kim SH (1991) “Soft docking”: matching of molecular surface cubes. J Mol Biol 219(1):79–102

    Article  CAS  PubMed  Google Scholar 

  • Jones DT (1999) GenTHREADER: an efficient and reliable protein folds recognition method for genomic sequences. J Mol Biol 287(4):797–815

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267(3):727–748

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Roy K (2013) How far can virtual screening take us in drug discovery? Expert Opin Drug Discov 8(3):245–261

    Article  CAS  PubMed  Google Scholar 

  • Katsila T, Spyroulias GA, Patrinos GP, Matsoukas MT (2016) Computational approaches in target identification and drug discovery. Comput Struct Biotechnol J 14:177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur G, Pandey B, Grover A, Garewal N, Grover A, Kaur J (2018) Drug targeted virtual screening and molecular dynamics of LipU protein of Mycobacterium tuberculosis and Mycobacterium leprae. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2018.1454852

    Article  PubMed  CAS  Google Scholar 

  • Kelley BP, Brown SP, Warren GL, Muchmore SW (2015a) POSIT: flexible shape-guided docking for pose prediction. J Chem Inf Model 55(8):1771–1780

    Article  CAS  PubMed  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015b) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DS, Kim CM, Won CI, Kim JK, Ryu J, Cho Y, Bhak J (2011) BetaDock: shape-priority docking method based on beta-complex. J Biomol Struct Dyn 29(1):219–242

    Article  CAS  PubMed  Google Scholar 

  • Kneidinger B, Marolda C, Graninger M, Zamyatina A, McArthur F, Kosma P, Valvano MA, Messner P (2002) Biosynthesis pathway of ADP-L-glycero-beta-D-manno-heptose in Escherichia coli. J Bacteriol 184(2):363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko Y, Choi I (2016) Putative 3D structure of QcrB from Mycobacterium tuberculosis cytochrome bc1 complex, a novel drug-target for new series of antituberculosis agent Q203. Bull Kor Chem Soc 37:725–731

    Article  CAS  Google Scholar 

  • Korb O, Stützle T, Exner TE (2006) PLANTS: application of ant colony optimization to structure-based drug design. In: Dorigo M, Gambardella LM, Birattari M, Martinoli A, Poli R, Stützle T (eds) Ant colony optimization and swarm intelligence, vol 4150. Springer, Berlin, Heidelberg, pp 247–258

    Chapter  Google Scholar 

  • Krüüner A, Jureen P, Levina K, Ghebremichael S, Hoffner S (2003) Discordant resistance to kanamycin and amikacin in drug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 47(9):2971–2973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar P, Arora K, Lloyd JR, Lee IY, Nair V, Fischer E, Boshoff HI, Barry CE 3rd (2012) Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis. Mol Microbiol 86(2):367–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13(5):323–330, 307–308

    Article  CAS  PubMed  Google Scholar 

  • Laurie AT, Jackson RM (2005) Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21(9):1908–1916

    Article  CAS  PubMed  Google Scholar 

  • Lee GR, Seok C (2016) Galaxy7TM: flexible GPCR-ligand docking by structure refinement. Nucleic Acids Res 44(W1):W502–W506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HS, Zhang Y (2012) BSP-SLIM: a blind low-resolution ligand-protein docking approach using predicted protein structures. Proteins 80(1):93–110

    Article  CAS  PubMed  Google Scholar 

  • Leelananda SP, Lindert S (2016) Computational methods in drug discovery. Beilstein J Org Chem 12:2694–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leeson PD, Davis AM, Steele J (2004) Drug-like properties: guiding principles for design–or chemical prejudice? Drug Discov Today Technol 1(3):189–195

    Article  CAS  PubMed  Google Scholar 

  • LeMagueres P, Im H, Ebalunode J, Strych U, Benedik MJ, Briggs JM, Kohn H, Krause KL (2005) The 1.9 A crystal structure of alanine racemase from Mycobacterium tuberculosis contains a conserved entryway into the active site. Biochemistry 44(5):1471–1481

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Yu CY, Li XX, Zhang P, Tang J, Yang Q, Fu T, Zhang X, Cui X, Tu G, Zhang Y, Li S, Yang F, Sun Q, Qin C, Zeng X, Chen Z, Chen YZ, Zhu F (2018) Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res 46(D1):D1121–D1127

    CAS  PubMed  Google Scholar 

  • Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the amber ff99SB protein force field. Proteins 78(8):1950–1958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lionta E, Spyrou G, Vassilatis DK, Cournia Z (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14(16):1923–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Wang S (1999) MCDOCK: a Monte Carlo simulation approach to the molecular docking problem. J Comput Aided Mol Des 13(5):435–451

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Tang GW, Capriotti E (2011) Comparative modeling: the state of the art and protein drug target structure prediction. Comb Chem High Throughput Screen 14(6):532–547

    Article  PubMed  Google Scholar 

  • Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X (2018) Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov 13(1):23–37

    Article  CAS  PubMed  Google Scholar 

  • London N, Raveh B, Cohen E, Fathi G, Schueler-Furman O (2011) Rosetta FlexPepDock web server--high resolution modeling of peptide-protein interactions. Nucleic Acids Res 39(Web Server issue):W249–W253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lone MY, Athar M, Gupta VK, Jha PC (2017a) Identification of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase inhibitors: a combined in-silico and in-vitro analysis. J Mol Graph Model 76:172–180

    Article  CAS  PubMed  Google Scholar 

  • Lone MY, Athar M, Gupta VK, Jha PC (2017b) Prioritization of natural compounds against Mycobacterium tuberculosis 3-dehydroquinate dehydratase: A combined in-silico and in-vitro study. Biochem Biophys Res Commun 491(4):1105–1111

    Article  CAS  PubMed  Google Scholar 

  • Lone MY, Manhas A, Athar M, Jha PC (2017c) Identification of InhA inhibitors: a combination of virtual screening, molecular dynamics simulations and quantum chemical studies. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2017.1372313

    Article  PubMed  CAS  Google Scholar 

  • Maganti L, OSDD Consortium, Ghoshal N (2015) 3D-QSAR studies and shape based virtual screening for identification of novel hits to inhibit MbtA in Mycobacterium tuberculosis. J Biomol Struct Dyn 33(2):344–364

    Article  CAS  PubMed  Google Scholar 

  • Maitre T, Aubry A, Jarlier V, Robert J, Veziris N, CNR-MyRMA (2017) Multidrug and extensively drug-resistant tuberculosis. Med Mal Infect 47(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Manikandan K, Geerlof A, Zozulya AV, Svergun DI, Weiss MS (2011) Structural studies on the enzyme complex isopropylmalate isomerase (LeuCD) from Mycobacterium tuberculosis. Proteins 79(1):35–49

    Article  CAS  PubMed  Google Scholar 

  • Mansuri R, Ansari MY, Singh J, Rana S, Sinha S, Sahoo GC, Dikhit MR, Das P (2016) Computational elucidation of structural basis for ligand binding with Mycobacterium tuberculosis glucose-1-phosphate thymidylyltransferase (RmlA). Curr Pharm Biotechnol 17(12):1089–1099

    Article  CAS  PubMed  Google Scholar 

  • Mao C, Shukla M, Larrouy-Maumus G, Dix FL, Kelley LA, Sternberg MJ, Sobral BW, de-Carvalho LP (2013) Functional assignment of Mycobacterium tuberculosis proteome revealed by genome-scale fold-recognition. Tuberculosis (Edinb) 93(1):40–46

    Article  CAS  Google Scholar 

  • Marialke J, Tietze S, Apostolakis J (2008) Similarity based docking. J Chem Inf Model 48(1):186–196

    Article  CAS  PubMed  Google Scholar 

  • Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C (2011) Protein 3D structure computed from evolutionary sequence variation. PLoS One 6(12):e28766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matteelli A, Roggi A, Carvalho AC (2014) Extensively drug-resistant tuberculosis: epidemiology and management. Clin Epidemiol 6:111–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Maus CE, Plikaytis BB, Shinnick TM (2005a) Mutation of tlyA confers capreomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49(2):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maus CE, Plikaytis BB, Shinnick TM (2005b) Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49(8):3192–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK (2003) Gaussian docking functions. Biopolymers 68(1):76–90

    Article  CAS  PubMed  Google Scholar 

  • McMartin C, Bohacek RS (1997) QXP: powerful, rapid computer algorithms for structure-based drug design. J Comput Aided Mol Des 11(4):333–344

    Article  CAS  PubMed  Google Scholar 

  • Mehra R, Rani C, Mahajan P, Vishwakarma RA, Khan IA, Nargotra A (2016) Computationally guided identification of novel Mycobacterium tuberculosis GlmU lnhibitory leads, their optimization, and in vitro validation. ACS Comb Sci 18(2):100–116

    Article  CAS  PubMed  Google Scholar 

  • Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des 7(2):146–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MD, Kearsley SK, Underwood DJ, Sheridan RP (1994) FLOG: a system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des 8(2):153–174

    Article  CAS  PubMed  Google Scholar 

  • Mizutani MY, Tomioka N, Itai A (1994) Rational automatic search method for stable docking models of protein and ligand. J Mol Biol 243(2):310–326

    Article  CAS  PubMed  Google Scholar 

  • Mohamad S, Ismail NN, Parumasivam T, Ibrahim P, Osman H, A Wahab H (2018) Antituberculosis activity, phytochemical identification of Costus speciosus (J. Koenig) Sm., Cymbopogon citratus (DC. Ex Nees) Stapf., and Tabernaemontana coronaria (L.) Willd. and their effects on the growth kinetics and cellular integrity of Mycobacterium tuberculosis H37Rv. BMC Complement Altern Med 18(1):5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19(14):1639–1662

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Nair S, Ghosh S (2012) Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 36(2):463–485

    Article  CAS  PubMed  Google Scholar 

  • Namasivayam V, Gunther R (2007) PSO@AUTODOCK: a fast flexible molecular docking program based on swarm intelligence. Chem Biol Drug Des 70(6):475–484

    Article  CAS  PubMed  Google Scholar 

  • Naz S, Farooq U, Ali S, Sarwar R, Khan S, Abagyan R (2018) Identification of new benzamide inhibitor against α-subunit of tryptophan synthase from Mycobacterium tuberculosis through structure-based virtual screening, anti-tuberculosis activity and molecular dynamics simulations. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2018.1448303

    Article  PubMed  CAS  Google Scholar 

  • Nazzaro F, Fratianni F, De Martino L, Coppola R, De-Feo V (2013) Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 6(12):1451–1474

    Article  CAS  Google Scholar 

  • Njire M, Tan Y, Mugweru J, Wang C, Guo J, Yew W, Tan S, Zhang T (2016) Pyrazinamide resistance in Mycobacterium tuberculosis: review and update. Adv Med Sci 61(1):63–71

    Article  PubMed  Google Scholar 

  • Oprea TI (2000) Property distribution of drug-related chemical databases. J Comput Aided Mol Des 14(3):251–264

    Article  CAS  PubMed  Google Scholar 

  • Pagadala NS, Syed K, Tuszynski J (2017) Software for molecular docking: a review. Biophys Rev 9(2):91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey B, Grover S, Tyagi C, Goyal S, Jamal S, Singh A, Kaur J, Grover A (2018) Dynamics of fluoroquinolones induced resistance in DNA gyrase of Mycobacterium tuberculosis. J Biomol Struct Dyn 36(2):362–375

    Article  CAS  PubMed  Google Scholar 

  • Pang YP, Perola E, Xu K, Prendergast FG (2001) EUDOC: a computer program for identification of drug interaction sites in macromolecules and drug leads from chemical databases. J Comput Chem 22(15):1750–1771

    Article  CAS  PubMed  Google Scholar 

  • Paul DS, Gautham N (2016) MOLS 2.0: software package for peptide modeling and protein-ligand docking. J Mol Model 22(10):239

    Article  PubMed  CAS  Google Scholar 

  • Pei JF, Wang Q, Liu ZM, Li QL, Yang K, Lai LH (2006) PSIDOCK: towards highly efficient and accurate flexible ligand docking. Proteins 62(4):934–946

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Xu J (2011) RaptorX: exploiting structure information for protein alignment by statistical inference. Proteins 10:161–171

    Article  Google Scholar 

  • Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pippel M, Scharfe M, Meier R, Sippl W (2012) ParaDockS – an open source framework for molecular docking. J Cheminform. https://doi.org/10.1186/1758-2946-4-S1-F3

  • Plewczynski D, Łaźniewski M, von Grotthuss M, Rychlewski L, Ginalski K (2011) VoteDock: consensus docking method for prediction of protein-ligand interactions. J Comput Chem 32(4):568–581

    Article  CAS  PubMed  Google Scholar 

  • Putri DU, Rintiswati N, Soesatyo MH, Haryana SM (2018) Immune modulation properties of herbal plant leaves: Phyllanthus niruri aqueous extract on immune cells of tuberculosis patient – in vitro study. Nat Prod Res 32(4):463–467

    Article  CAS  PubMed  Google Scholar 

  • Pyrkov TV, Chugunov AO, Krylov NA, Nolde DE, Efremov RG (2009) PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes. Bioinformatics 25(9):1201–1202

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Zang S, Ma Y, Owusu L, Zhou L, Jiang T, Xin Y (2017) Homology modeling and identification of amino acids involved in the catalytic process of Mycobacterium tuberculosis serine acetyltransferase. Mol Med Rep 15(3):1343–1347

    Article  CAS  PubMed  Google Scholar 

  • Quan D, Nagalingam G, Payne R, Triccas JA (2017) New tuberculosis drug leads from naturally occurring compounds. Int J Infect Dis 56:212–220

    Article  CAS  PubMed  Google Scholar 

  • Rajendran V, Sethumadhavan R (2014) Drug resistance mechanism of PncA in Mycobacterium tuberculosis. J Biomol Struct Dyn 32(2):209–221

    Article  CAS  PubMed  Google Scholar 

  • Raman K, Chandra N (2008) Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol 8:234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raman K, Yeturu K, Chandra N (2008) targetTB: a target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis. BMC Syst Biol 2:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramesh KV, Purohit M, Mekhala K, Krishnan M, Wagle K, Deshmukh S (2008) Modeling the interactions of herbal drugs to β-ketoacyl ACP synthase of Mycobacterium tuberculosis H37Rv. J Biomol Struct Dyn 25(5):481–493

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS, Pati SP, Kumar PP, Pradeep HN, Sastry GN (2007) Virtual screening in drug discovery -- a computational perspective. Curr Protein Pept Sci 8(4):329–351

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S, Schmidtke P et al (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 2014(10):e1003571

    Article  CAS  Google Scholar 

  • Saini DK, Tyagi JS (2005) High-throughput microplate phosphorylation assays based on DevR-DevS/Rv2027c 2-component signal transduction pathway to screen for novel antitubercular compounds. J Biomol Screen 10(3):215–224

    Article  CAS  PubMed  Google Scholar 

  • Sambandamurthy VK, Wang X, Chen B, Russell RG, Derrick S, Collins FM, Morris SL, Jacobs WR Jr (2002) A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 8(10):1171–1174

    Article  CAS  PubMed  Google Scholar 

  • Sanusi SB, Abu-Bakar MF, Mohamed M, Sabran SF, Mainasara MM (2017) Southeast Asian medicinal plants as a potential source of antituberculosis agent. Evid Based Complement Alternat Med 2017:7185649

    Article  PubMed  PubMed Central  Google Scholar 

  • Sauton N, Lagorce D, Villoutreix BO, Miteva MA (2008) MSDOCK: accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics 2008:9

    Google Scholar 

  • Schmidtke P, Bidon-Chanal A, Luque FJ, Barril X (2011) MDpocket: open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics 27(23):3276–3285

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33(Web Server issue):W363–W367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidel M, Alderwick LJ, Birch HL, Sahm H, Eggeling L, Besra GS (2007) Identification of a novel arabinofuranosyltransferase AftB involved in a terminal step of cell wall arabinan biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J Biol Chem 282(20):14729–14740

    Article  CAS  PubMed  Google Scholar 

  • Seifert M, Catanzaro D, Catanzaro A, Rodwell TC (2015) Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One 10(3):e0119628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sengupta S, Roy D, Bandyopadhyay S (2015) Structural insight into Mycobacterium tuberculosis maltosyl transferase inhibitors: pharmacophore-based virtual screening, docking, and molecular dynamics simulations. J Biomol Struct Dyn 33(12):2655–2666

    Article  CAS  PubMed  Google Scholar 

  • Shin WH, Heo L, Lee J, Ko J, Seok C, Lee J (2011) LigDock-CSA: protein-ligand docking using conformational space annealing. J Comput Chem 32(15):3226–3232

    Article  CAS  PubMed  Google Scholar 

  • Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432(7019):862–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla R, Shukla H, Sonkar A, Pandey T, Tripathi T (2017) Structure-based screening and molecular dynamics simulations offer novel natural compounds as potential inhibitors of Mycobacterium tuberculosis isocitrate lyase. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2017.1341337

    Article  PubMed  CAS  Google Scholar 

  • Silva JRA, Bishai WR, Govender T, Lamichhane G, Maguire GEM, Kruger HG, Lameira J, Alves CN (2016) Targeting the cell wall of Mycobacterium tuberculosis: a molecular modeling investigation of the interaction of imipenem and meropenem with L,D-transpeptidase 2. J Biomol Struct Dyn 34(2):304–317

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Kefala G, Janowski R, Mueller-Dieckmann C, von Kries JP, Weiss MS (2005) The high-resolution structure of LeuB (Rv2995c) from Mycobacterium tuberculosis. J Mol Biol 346(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Singh T, Biswas D, Jayaram B (2011) AADS – an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J Chem Inf Model 51(10):2515–2527

    Article  CAS  PubMed  Google Scholar 

  • Skariyachan S, Manjunath M, Bachappanavar N (2018) Screening of potential lead molecules against prioritised targets of multi-drug-resistant-Acinetobacter baumannii – insights from molecular docking, molecular dynamic simulations and in vitro assays. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2018.1451387

    Article  PubMed  CAS  Google Scholar 

  • Sneader W (1990) Chronology of drug introductions. Comp Med Chem 1:7–80

    CAS  Google Scholar 

  • Sobolev V, Wade RC, Vriend G, Edelman M (1996) Molecular docking using surface complementarity. Proteins 25(1):120–129

    Article  CAS  PubMed  Google Scholar 

  • Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server issue):W244–W248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sopitthummakhun K, Thongpanchang C, Vilaivan T, Yuthavong Y, Chaiyen P, Leartsakulpanich U (2012) Plasmodium serine hydroxymethyltransferase as a potential anti-malarial target: inhibition studies using improved methods for enzyme production and assay. Malar J 11:194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spitzer R, Jain AN (2012) Surflex-Dock: docking benchmarks and real-world application. J Comput Aided Mol Des 26(6):687–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stroganov OV, Novikov FN, Stroylov VS, Kulkov V, Chilov GG (2008) Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening. J Chem Inf Model 48(12):2371–2385

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Zhang C, Xiang L, Pi R, Guo Z, Zheng C, Li S, Zhao Y, Tang K, Luo M, Rastogi N, Li Y, Sun Q (2016) Characterization of mutations in streptomycin-resistant Mycobacterium tuberculosis isolates in Sichuan, China and the association between Beijing-lineage and dual-mutation in gidB. Tuberculosis (Edinb) 96:102–106

    Article  CAS  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von-Mering C (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368

    Article  CAS  PubMed  Google Scholar 

  • Tan KP, Nguyen TB, Patel S, Varadarajan R, Madhusudhan MS (2013) Depth: a web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pKa of ionizable residues in proteins. Nucleic Acids Res 41(Web Server issue):W314–W321

    Article  PubMed  PubMed Central  Google Scholar 

  • Tan Y, Su B, Zheng H, Song Y, Wang Y, Pang Y (2017) Molecular characterization of prothionamide-resistant Mycobacterium tuberculosis isolates in southern China. Front Microbiol 8:2358

    Article  PubMed  PubMed Central  Google Scholar 

  • Taylor JS, Burnett RM (2000) DARWIN: a program for docking flexible molecules. Proteins 41(2):173–191

    Article  CAS  PubMed  Google Scholar 

  • Taylor RD, Jewsbury PJ, Essex JW (2003) FDS: flexible ligand and receptor docking with a continuum solvent model and soft-core energy function. J Comput Chem 24(13):1637–1656

    Article  CAS  PubMed  Google Scholar 

  • Thomsen R, Christensen MH (2006) MolDock: a new technique for high-accuracy molecular docking. J Med Chem 49(11):3315–3321

    Article  CAS  PubMed  Google Scholar 

  • Totrov M, Abagyan R (1997) Flexible protein-ligand docking by global energy optimization in internal coordinates. Proteins 1:215–220

    Article  PubMed  Google Scholar 

  • Trosset JY, Scheraga HA (1999) Prodock: software package for protein modeling and docking. J Comput Chem 20(4):412–427

    Article  CAS  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai TY, Chang KW, Chen CY (2011) iScreen: world’s first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J Comput Aided Mol Des 25(6):525–531

    Article  CAS  PubMed  Google Scholar 

  • Usha T, Shanmugarajan D, Goyal AK, Kumar CS, Middha SK (2017) Recent updates on computer-aided drug discovery: time for a paradigm shift. Curr Top Med Chem 17(30):3296–3307

    Article  CAS  PubMed  Google Scholar 

  • Valvano MA, Messner P, Kosma P (2002) Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides. Microbiology 148(Pt 7):1979–1989

    Article  CAS  PubMed  Google Scholar 

  • Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape directed rapid docking of ligands to protein active-sites. J Mol Graph Model 21(4):289–307

    Article  CAS  PubMed  Google Scholar 

  • Vidyaraj CK, Chitra A, Smita S, Muthuraj M, Govindarajan S, Usharani B, Anbazhagi S (2017) Prevalence of rifampicin-resistant Mycobacterium tuberculosis among human-immunodeficiency-virus-seropositive patients and their treatment outcomes. J Epidemiol Glob Health 7(4):289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilar S, Cozza G, Moro S (2008) Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr Top Med Chem 8(18):1555–1572

    Article  CAS  PubMed  Google Scholar 

  • Vilchèze C, Jacobs WR Jr (2014) Resistance to isoniazid and ethionamide in Mycobacterium tuberculosis: genes, mutations, and causalities. Microbiol Spectr 2(4):MGM2-0014-2013

    Article  PubMed  CAS  Google Scholar 

  • Vyas V, Jain A, Jain A, Gupta A (2008) Virtual screening: a fast tool for drug design. Sci Pharm 76(3):333–360

    Article  CAS  Google Scholar 

  • Vyas VK, Ukawala RD, Ghate M, Chintha C (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74(1):1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagener M, Jd V, Nabuurs SB (2012) Flexible protein-ligand docking using the Fleksy protocol. J Comput Chem 33(12):1215–1217

    CAS  PubMed  Google Scholar 

  • Wang JC, Chu PY, Chen CM, Lin JH (2012) idTarget: a web server for identifying protein targets of small chemical molecules with robust scoring functions and a divide-and-conquer docking approach. Nucleic Acids Res 40(Web Server issue):W393–W399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb B, Sali A (2017) Protein structure modeling with MODELLER. Methods Mol Biol 1654:39–54

    Article  CAS  PubMed  Google Scholar 

  • Welch W, Ruppert J, Jain AN (1996) Hammerhead: fast, fully automated docking of flexible ligands to protein binding sites. Chem Biol 3(6):449–462

    Article  CAS  PubMed  Google Scholar 

  • Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines (Basel) 2(3):251–286

    Article  CAS  PubMed Central  Google Scholar 

  • World Health Organization (WHO). (2018) http://www.who.int/tb/en/. Accessed 10 Apr 2018

  • Wu S, Zhang Y (2008) MUSTER: improving protein sequence profile-profile alignments by using multiple sources of structure information. Proteins 72(2):547–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Zhang Y (2012) Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field. Proteins 80(7):1715–1735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan RX, Si JN, Wang C, Zhang Z (2009) DescFold: a web server for protein fold recognition. BMC Bioinformatics 10:416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins 55(2):288–304

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Sanner MF (2007) FLIPDock: docking flexible ligands into flexible receptors. Proteins 68(3):726–737

    Article  CAS  PubMed  Google Scholar 

  • Zhao LL, Sun Q, Liu HC, Wu XC, Xiao TY, Zhao XQ, Li GL, Jiang Y, Zeng CY, Wan KL (2015) Analysis of embCAB mutations associated with ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis isolates from China. Antimicrob Agents Chemother 59(4):2045–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J, Rubin EJ, Bifani P, Mathys V, Lim V, Au M, Jang J, Nam J, Dick T, Walker JR, Pethe K, Camacho LR (2013) Para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem 288(32):23447–23456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zsoldos Z, Reid D, Simon A, Sadjad SB, Johnson AP (2007) eHiTS: a new fast, exhaustive flexible ligand docking system. J Mol Graph Model 26(1):198–212

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinosh Skariyachan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bachappanavar, N., Skariyachan, S. (2019). Combinatorial Designing of Novel Lead Molecules Towards the Putative Drug Targets of Extreme Drug-Resistant Mycobacterium tuberculosis: A Future Insight for Molecular Medicine. In: Shaik, N., Hakeem, K., Banaganapalli, B., Elango, R. (eds) Essentials of Bioinformatics, Volume II. Springer, Cham. https://doi.org/10.1007/978-3-030-18375-2_12

Download citation

Publish with us

Policies and ethics