Skip to main content

The Triumph of Individualism: Evolution of Somatically Generated Adaptive Immune Systems

  • Chapter
  • First Online:
Evolutionary Concepts in Immunology

Abstract

The receptors of innate immune systems evolve slowly over time. Those that confer some fitness benefit will be naturally selected, and so become the common property of the succeeding generations. In contrast, the receptors of the so-called adaptive immune systems are generated somatically within each individual, by moving evolution from the level of the germline to that of somatic cells. As a result, each individual ends up with a repertoire of adaptive immune receptors that is as distinctive as are their fingerprints. Unlike the fingerprint, however, the repertoire of adaptive immunity in an individual is constantly changing. Adaptive immune systems come in two fundamentally different forms that differ both in the nature and in the source of the pathogen-sensing element. On the one hand are those immune systems that use nucleic acids as the pathogen sensors. In these cases the sensor is only formed after infection, and the key information needed to build it is derived from the pathogen. On the other hand are those “anticipatory” systems that use proteins as pathogen sensors. Here the sensors have been formed prior to infection with the pathogen, and the information used to form the sensors is entirely host derived.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang E, Hunter CP (2017) SID-1 functions in multiple roles to support parental RNAi in Caenorhabditis elegans. Genetics 207(2):547–557

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tassetto M, Kunitomi M, Andino R (2017) Circulating immune cells mediate a systemic RNAi-based adaptive antiviral response in Drosophila. Cell 169(2):314–325 e13

    Article  CAS  Google Scholar 

  3. Benitez AA et al (2015) Engineered mammalian RNAi can elicit antiviral protection that negates the requirement for the interferon response. Cell Rep 13(7):1456–1466

    Article  CAS  Google Scholar 

  4. Schoggins JW et al (2011) A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472(7344):481–485

    Article  CAS  Google Scholar 

  5. Adema CM (2015) Fibrinogen-related proteins (FREPs) in mollusks. Results Probl Cell Differ 57:111–129

    Article  CAS  Google Scholar 

  6. Pancer Z et al (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430(6996):174–180

    Article  CAS  Google Scholar 

  7. Holland SJ et al (2018) Expansions, diversification, and interindividual copy number variations of AID/APOBEC family cytidine deaminase genes in lampreys. Proc Natl Acad Sci U S A 115(14):E3211–E3220

    Article  CAS  Google Scholar 

  8. Han BW et al (2008) Antigen recognition by variable lymphocyte receptors. Science 321(5897):1834–1837

    Article  CAS  Google Scholar 

  9. Kapitonov VV, Jurka J (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci U S A 100(11):6569–6574

    Article  CAS  Google Scholar 

  10. Kapitonov VV, Koonin EV (2015) Evolution of the RAG1-RAG2 locus: both proteins came from the same transposon. Biol Direct 10:20

    Article  Google Scholar 

  11. Kapitonov VV, Jurka J (2005) RAG1 core and V(D)J recombination signal sequences were derived from transib transposons. PLoS Biol 3(6):e181

    Article  Google Scholar 

  12. Watson CT, Breden F (2012) The immunoglobulin heavy chain locus: genetic variation, missing data, and implications for human disease. Genes Immun 13(5):363–373

    Article  CAS  Google Scholar 

  13. Barclay AN (1999) Ig-like domains: evolution from simple interaction molecules to sophisticated antigen recognition. Proc Natl Acad Sci U S A 96(26):14672–14674

    Article  CAS  Google Scholar 

  14. Wardemann H et al (2003) Predominant autoantibody production by early human B cell precursors. Science 301(5638):1374–1377

    Article  CAS  Google Scholar 

  15. Rowland SL et al (2010) BAFF receptor signaling aids the differentiation of immature B cells into transitional B cells following tonic BCR signaling. J Immunol 185(8):4570–4581

    Article  CAS  Google Scholar 

  16. Moore T, Haig D (1991) Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 7(2):45–49

    Article  CAS  Google Scholar 

  17. Lomvardas S et al (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126(2):403–413

    Article  CAS  Google Scholar 

  18. Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11(1):47–59

    Article  CAS  Google Scholar 

  19. Suurvali J et al (2014) The proto-MHC of placozoans, a region specialized in cellular stress and ubiquitination/proteasome pathways. J Immunol 193(6):2891–2901

    Article  Google Scholar 

  20. Danchin EG, Pontarotti P (2004) Towards the reconstruction of the bilaterian ancestral pre-MHC region. Trends Genet 20(12):587–591

    Article  CAS  Google Scholar 

  21. Flajnik MF, Kasahara M (2001) Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system. Immunity 15(3):351–362

    Article  CAS  Google Scholar 

  22. Kaufman J (2018) Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol 36:383–409

    Article  CAS  Google Scholar 

  23. Nathan JA et al (2013) Immuno- and constitutive proteasomes do not differ in their abilities to degrade ubiquitinated proteins. Cell 152(5):1184–1194

    Article  CAS  Google Scholar 

  24. Eisen HN et al (2012) Promiscuous binding of extracellular peptides to cell surface class I MHC protein. Proc Natl Acad Sci U S A 109(12):4580–4585

    Article  CAS  Google Scholar 

  25. Klein L et al (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14(6):377–391

    Article  CAS  Google Scholar 

  26. Ye P, Kirschner DE (2002) Reevaluation of T cell receptor excision circles as a measure of human recent thymic emigrants. J Immunol 168(10):4968–4979

    Article  CAS  Google Scholar 

  27. Venkatesh B et al (2014) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505(7482):174–179

    Article  CAS  Google Scholar 

  28. Wilson M et al (1992) What limits affinity maturation of antibodies in Xenopus--the rate of somatic mutation or the ability to select mutants? EMBO J 11(12):4337–4347

    Article  CAS  Google Scholar 

  29. Hwang JK, Alt FW, Yeap LS (2015) Related mechanisms of antibody somatic hypermutation and class switch recombination. Microbiol Spectr 3(1):MDNA3-0037-2014

    PubMed  Google Scholar 

  30. Berek C, Milstein C (1987) Mutation drift and repertoire shift in the maturation of the immune response. Immunol Rev 96:23–41

    Article  CAS  Google Scholar 

  31. Allen CD, Okada T, Cyster JG (2007) Germinal-center organization and cellular dynamics. Immunity 27(2):190–202

    Article  CAS  Google Scholar 

  32. Vinuesa CG et al (2016) Follicular helper T cells. Annu Rev Immunol 34:335–368

    Article  CAS  Google Scholar 

  33. Crotty S (2015) A brief history of T cell help to B cells. Nat Rev Immunol 15(3):185–189

    Article  CAS  Google Scholar 

  34. Zhu C et al (2012) Origin of immunoglobulin isotype switching. Curr Biol 22(10):872–880

    Article  CAS  Google Scholar 

  35. Manz RA, Thiel A, Radbruch A (1997) Lifetime of plasma cells in the bone marrow. Nature 388(6638):133–134

    Article  CAS  Google Scholar 

  36. Matsuda F et al (1998) The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med 188(11):2151–2162

    Article  CAS  Google Scholar 

  37. Star B et al (2011) The genome sequence of Atlantic cod reveals a unique immune system. Nature 477(7363):207–210

    Article  CAS  Google Scholar 

  38. Tokunaga Y et al (2017) Comprehensive validation of T- and B-cell deficiency in rag1-null zebrafish: implication for the robust innate defense mechanisms of teleosts. Sci Rep 7(1):7536

    Article  Google Scholar 

  39. Holland SJ et al (2014) Selection of the lamprey VLRC antigen receptor repertoire. Proc Natl Acad Sci U S A 111(41):14834–14839

    Article  CAS  Google Scholar 

  40. Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15(9):371–377

    Article  CAS  Google Scholar 

  41. Hartenstein V (2006) Blood cells and blood cell development in the animal kingdom. Annu Rev Cell Dev Biol 22:677–712

    Article  CAS  Google Scholar 

  42. Adams B et al (1992) Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev 6(9):1589–1607

    Article  CAS  Google Scholar 

  43. Hirano M et al (2013) Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 501(7467):435–438

    Article  CAS  Google Scholar 

  44. Calderon L, Boehm T (2012) Synergistic, context-dependent, and hierarchical functions of epithelial components in thymic microenvironments. Cell 149(1):159–172

    Article  CAS  Google Scholar 

  45. Neuberger MS et al (2003) Immunity through DNA deamination. Trends Biochem Sci 28(6):305–312

    Article  CAS  Google Scholar 

  46. Ott JA et al (2018) Somatic hypermutation of T cell receptor alpha chain contributes to selection in nurse shark thymus. elife 7

    Google Scholar 

  47. Du Pasquier L (2004) Speculations on the origin of the vertebrate immune system. Immunol Lett 92(1-2):3–9

    Article  Google Scholar 

  48. Lee SS et al (2000) Rearrangement of immunoglobulin genes in shark germ cells. J Exp Med 191(10):1637–1648

    Article  CAS  Google Scholar 

Further Reading

  • Boehm T, Hirano M, Holland SJ, Das S, Schorpp M, Cooper MD (2018) Evolution of alternative adaptive immune systems in vertebrates. Annu Rev Immunol 36:19–42

    Article  CAS  Google Scholar 

  • Flajnik MF, Kasahara M (2010) Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat Rev Genet 11:47–59

    Article  CAS  Google Scholar 

  • Janeway C (2017) Immunobiology, 9th edn. Taylor and Francis, New York

    Google Scholar 

  • Kaufman J (2018) Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates. Annu Rev Immunol 36:383–409

    Article  CAS  Google Scholar 

  • Klein L et al (2014) Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 14(6):377–391

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jack, R., Du Pasquier, L. (2019). The Triumph of Individualism: Evolution of Somatically Generated Adaptive Immune Systems. In: Evolutionary Concepts in Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-18667-8_4

Download citation

Publish with us

Policies and ethics