Skip to main content

Maximum Principles at Infinity and the Ahlfors-Khas’minskii Duality: An Overview

  • Chapter
  • First Online:
Contemporary Research in Elliptic PDEs and Related Topics

Part of the book series: Springer INdAM Series ((SINDAMS,volume 33))

Abstract

This note is meant to introduce the reader to a duality principle for nonlinear equations recently discovered in Valtorta (Reverse Khas’minskii condition. Math Z 270(1):65–177, 2011), Mari and Valtorta (Trans Am Math Soc 365(9):4699–4727, 2013), and Mari and Pessoa (Commun Anal Geom, to appear). Motivations come from the desire to give a unifying potential-theoretic framework for various maximum principles at infinity appearing in the literature (Ekeland, Omori-Yau, Pigola-Rigoli-Setti), as well as to describe their interplay with properties coming from stochastic analysis on manifolds. The duality involves an appropriate version of these principles formulated for viscosity subsolutions of fully nonlinear inequalities, called the Ahlfors property, and the existence of suitable exhaustion functions called Khas’minskii potentials. Applications, also involving the geometry of submanifolds, will be discussed in the last sections. We conclude by investigating the stability of these maximum principles when we remove polar sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, as usual, if we write “w(x) → + as x diverges” we mean that the sublevels of w have compact closure in X, that is, that w is an exhaustion.

  2. 2.

    The radial sectional curvature is the sectional curvature restricted to 2-planes containing ∇ϱ. Inequality \(\mathrm {Sect}_{\mathrm {rad}} \geqslant - \mathrm {G}^2(\varrho )\) means that \(\mathrm {Sect}(\uppi _{\mathrm {x}}) \geqslant - \mathrm {G}^2\big (\varrho (\mathrm {x})\big )\) for each x∉{o}∪cut(o) and \(\uppi _{\mathrm {x}} \leqslant \mathrm {T}_{\mathrm {x}} \mathrm {X}\) 2-plane containing ∇ρ.

  3. 3.

    That is, the opposite of the roots of .

  4. 4.

    In [48], the uniform continuity of the Pucci operators in \((\mathcal {E} 6)\) is not explicitly stated but can be easily checked. For instance, in the case of \(\mathcal {P}^+_{\uplambda ,\Lambda }\), referring to Definition 2.23 in [48] and using the min-max definition,

    If ∥(A −B)+∥ < δ, then \(\mathcal {P}^+_{\uplambda ,\Lambda }(\mathrm {B}) \geqslant \mathcal {P}^+_{\uplambda ,\Lambda }(\mathrm {A}) - \mathrm {m}\Lambda \updelta \), that proves the uniform continuity of \(\mathrm {F}_{\uplambda ,\Lambda }^+\). The case of \(\mathrm {F}_{\uplambda , \Lambda }^-\) is analogous.

  5. 5.

    Theorem 3.11 can be stated for F locally jet-equivalent to a universal example, provided that the strong maximum principle in \((\mathcal {H} 1')\) holds for each manifold Y and each \(\widetilde {\mathrm {F}} \subset \mathrm {J}^2(Y)\) constructed by gluing as in the theorem.

  6. 6.

    By definition, a function u is semiconcave if and only if, locally, there exists v ∈C2, such that u + v is concave when restricted to geodesics.

References

  1. L.V. Ahlfors, An extension of Schwarz’s lemma. Trans. Am. Math. Soc. 43, 359–364 (1938)

    MathSciNet  MATH  Google Scholar 

  2. L.V. Ahlfors, L. Sario, Riemann Surfaces. Princeton Mathematical Series, vol. 26 (Princeton University Press, Princeton, 1960)

    Google Scholar 

  3. L.J. Alías, G.P. Bessa, M. Dajczer, The mean curvature of cylindrically bounded submanifolds. Math. Ann. 345(2), 367–376 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. L.J. Alías, P. Mastrolia, M. Rigoli, Maximum Principles and Geometric Applications. Springer Monographs in Mathematics (Springer, Cham, 2016), xvii+570 pp.

    Google Scholar 

  5. L.J. Alías, J. Miranda, M. Rigoli, A new open form of the weak maximum principle and geometric applications. Commun. Anal. Geom. 24(1), 1–43 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6, 551–561 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Bär, F. Pfäffle, Wiener measures on Riemannian manifolds and the Feynman-Kac formula. Mat. Contemp. 40, 37–90 (2011)

    MathSciNet  MATH  Google Scholar 

  8. M. Bardi, F. Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations. Arch. Math. (Basel) 73, 276–285 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. G.P. Bessa, B.P. Lima, L.F. Pessoa, Curvature estimates for properly immersed ϕh-bounded submanifolds. Ann. Mat. Pura Appl. 194(1), 109–130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Bianchini, L. Mari, P. Pucci, M. Rigoli, On the interplay among maximum principles, compact support principles and Keller-Osserman conditions on manifolds (2018). Available at arXiv:1801.02102

    Google Scholar 

  11. A. Borbely, A remark on the Omori-Yau maximum principle. Kuwait J. Sci. Eng. 39(2A), 45–56 (2012)

    MathSciNet  Google Scholar 

  12. A. Borbely, Stochastic completeness and the Omori-Yau maximum principle. J. Geom. Anal. (2017). https://doi.org/10.1007/s12220-017-9802-7

  13. L. Caffarelli, X. Cabre, Fully Nonlinear Elliptic Equations. Colloquium Publications, vol. 43 (American Mathematical Society, Providence, 1995)

    Google Scholar 

  14. S.Y. Cheng, S.T. Yau, Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28(3), 333–354 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. S.Y. Cheng, S.T. Yau, Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces. Ann. Math. (2) 104(3), 407–419 (1976)

    Google Scholar 

  16. P. Collin, R. Kusner, W.H. Meeks III, H. Rosenberg, The topology, geometry and conformal structure of properly embedded minimal surfaces. J. Differ. Geom. 67(2), 377–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. M.G. Crandall, A visit with the -Laplace equation, in Calculus of Variations and Nonlinear Partial Differential Equations. Lecture Notes in Mathematics, vol. 1927 (Springer, Berlin, 2008), pp. 75–122

    Google Scholar 

  18. M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second-order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. M.G. Crandall, L.C. Evans, R.F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. P.D.E. 13(2), 123–139 (2001)

    Google Scholar 

  20. M.P. Do Carmo, Riemannian Geometry. Mathematics: Theory and Applications (Birkäuser Boston Inc., Boston, 1992)

    Google Scholar 

  21. J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J. 32(5), 703–716 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. D.M. Duc, J. Eells, Regularity of exponentially harmonic functions. Int. J. Math. 2, 395–408 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. I. Ekeland, On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Emery, Stochastic Calculus in Manifolds. Universitext (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  25. F. Fontenele, F. Xavier, Good shadows, dynamics and convex hulls of complete submanifolds. Asian J. Math. 15(1), 9–31 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. L. Gärding, An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)

    MathSciNet  MATH  Google Scholar 

  27. R.E. Greene, H. Wu, C approximation of convex, subharmonic, and plurisubharmonic functions. Ann. Sci. Ec. Norm. Sup. 4e serie t.12, 47–84 (1979)

    Google Scholar 

  28. A. Grigor’yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds. Bull. Am. Math. Soc. 36, 135–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. F.R. Harvey, H.B. Lawson Jr., Dirichlet duality and the non-linear Dirichlet problem. Commun. Pure Appl. Math. 62, 396–443 (2009)

    Article  MATH  Google Scholar 

  30. F.R. Harvey, H.B. Lawson Jr., Dirichlet duality and the nonlinear Dirichlet problem on Riemannian manifolds. J. Differ. Geom. 88, 395–482 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. F.R. Harvey, H.B. Lawson Jr., Geometric plurisubharmonicity and convexity: an introduction. Adv. Math. 230(4–6), 2428–2456 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. F.R. Harvey, H.B. Lawson Jr., Existence, uniqueness and removable singularities for nonlinear partial differential equations in geometry, in Surveys in Differential Geometry 2013, vol. 18, ed. by H.D. Cao, S.T. Yau (International Press, Somerville, 2013), pp. 102–156

    Google Scholar 

  33. F.R. Harvey, H.B. Lawson Jr., Gärding’s theory of hyperbolic polynomials. Commun. Pure Appl. Math. 66(7), 1102–1128 (2013)

    Article  MATH  Google Scholar 

  34. F.R. Harvey, H.B. Lawson Jr., Removable singularities for nonlinear subequations. Indiana Univ. Math. J. 63(5), 1525–1552 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. F.R. Harvey, H.B. Lawson Jr., Characterizing the strong maximum principle for constant coefficient subequations. Rend. Mat. Appl. (7) 37(1–2), 63–104 (2016)

    Google Scholar 

  36. I. Holopainen, Nonlinear potential theory and quasiregular mappings on Riemannian manifolds. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 74, 45 pp. (1990)

    Google Scholar 

  37. D. Impera, S. Pigola, A.G. Setti, Potential theory for manifolds with boundary and applications to controlled mean curvature graphs. J. Reine Angew. Math. 733, 121–159 (2017)

    MathSciNet  MATH  Google Scholar 

  38. R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Ration. Mech. Anal. 123(1), 51–74 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Juutinen, Absolutely minimizing Lipschitz extensions on a metric space. Ann. Acad. Sci. Fenn. Math. 27(1), 57–67 (2002)

    MathSciNet  MATH  Google Scholar 

  40. L. Karp, Differential inequalities on complete Riemannian manifolds and applications. Math. Ann. 272(4), 449–459 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  41. B. Kawohl, N. Kutev, Strong maximum principle for semicontinuous viscosity solutions of nonlinear partial differential equations. Arch. Math. (Basel) 70(6), 470–478 (1998)

    Google Scholar 

  42. R.Z. Khas’minskii, Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Teor. Verojatnost. i Primenen., Akademija Nauk SSSR. Teorija Verojatnosteı̆ i ee Primenenija 5, 196–214 (1960)

    Google Scholar 

  43. N.V. Krylov, On the general notion of fully nonlinear second-order elliptic equations. Trans. Am. Math. Soc. 347(3), 857–895 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Z. Kuramochi, Mass distribution on the ideal boundaries of abstract Riemann surfaces I. Osaka Math. J. 8, 119–137 (1956)

    MathSciNet  MATH  Google Scholar 

  45. P. Li, Harmonic functions and applications to complete manifolds. XIV Escola de Geometria Diferencial: Em homenagem a Shiing-Shen Chern (2006)

    Google Scholar 

  46. P. Li, L.-F. Tam, Harmonic functions and the structure of complete manifolds. J. Differ. Geom. 35, 359–383 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Magliaro, L. Mari, M. Rigoli, On a paper of Berestycki-Hamel-Rossi and its relations to the weak maximum principle at infinity, with applications. Rev. Mat. Iberoam. 34, 915–936 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. L. Mari, L.F. Pessoa, Duality between Ahlfors-Liouville and Khas’minskii properties for non-linear equations. Commun. Anal. Geom. (to appear)

    Google Scholar 

  49. L. Mari, M. Rigoli, Maps from Riemannian manifolds into non-degenerate Euclidean cones. Rev. Mat. Iberoam. 26(3), 1057–1074 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. L. Mari, D. Valtorta, On the equivalence of stochastic completeness, Liouville and Khas’minskii condition in linear and nonlinear setting. Trans. Am. Math. Soc. 365(9), 4699–4727 (2013)

    MATH  Google Scholar 

  51. L. Mazet, A general halfspace theorem for constant mean curvature surfaces. Am. J. Math. 135(3), 801–834 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. W.H. Meeks III, H. Rosenberg, Maximum principles at infinity. J. Differ. Geom. 79(1), 141–165 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  53. M. Nakai, On Evans potential. Proc. Jpn. Acad. 38, 624–629 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  54. M. Nakai, L. Sario, Classification Theory of Riemann Surfaces (Springer, Berlin, 1970)

    MATH  Google Scholar 

  55. H. Omori, Isometric immersions of Riemannian manifolds. J. Math. Soc. Jpn. 19, 205–214 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Pigola, A.G. Setti, Global Divergence Theorems in Nonlinear PDEs and Geometry. Ensaios Matemáticos [Mathematical Surveys], vol. 26 (Sociedade Brasileira de Matemática, Rio de Janeiro, 2014), ii+77 pp.

    Google Scholar 

  57. S. Pigola, M. Rigoli, A.G. Setti, A remark on the maximum principle and stochastic completeness. Proc. Am. Math. Soc. 131(4), 1283–1288 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  58. S. Pigola, M. Rigoli, A.G. Setti, Maximum principles on Riemannian manifolds and applications. Mem. Am. Math. Soc. 174(822) (2005)

    Google Scholar 

  59. S. Pigola, M. Rigoli, A.G. Setti, Some non-linear function theoretic properties of Riemannian manifolds. Rev. Mat. Iberoam. 22(3), 801–831 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  60. S. Pigola, M. Rigoli, A.G. Setti, Maximum principles at infinity on Riemannian manifolds: an overview. Mat. Contemp. 31, 81–128 (2006). Workshop on Differential Geometry (Portuguese)

    Google Scholar 

  61. S. Pigola, M. Rigoli, A.G. Setti, Vanishing and Finiteness Results in Geometric Analysis. A Generalization of the Böchner Technique. Progress in Mathematics, vol. 266 (Birkäuser, Boston, 2008)

    Google Scholar 

  62. S. Pigola, M. Rigoli, A.G. Setti, Aspects of potential theory on manifolds, linear and non-linear. Milan J. Math. 76, 229–256 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. P. Pucci, J. Serrin, The Maximum Principle. Progress in Nonlinear Differential Equations and Their Applications, vol. 73 (Birkhäuser Verlag, Basel, 2007), p. x+235

    Google Scholar 

  64. P. Pucci, M. Rigoli, J. Serrin, Qualitative properties for solutions of singular elliptic inequalities on complete manifolds. J. Differ. Equ. 234(2), 507–543 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. J.P. Sha, p-Convex riemannian manifolds. Invent. Math. 83, 437–447 (1986)

    Google Scholar 

  66. D.W. Stroock, S.R.S. Varadhan, Multidimensional Diffusion Processes. Reprint of the 1997 edition. Classics in Mathematics (Springer, Berlin, 2006), xii+338 pp.

    Google Scholar 

  67. F. Sullivan, A characterization of complete metric spaces. Proc. Am. Math. Soc. 83(2), 345–346 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  68. C.-J. Sung, L.-F. Tam, J. Wang, Spaces of harmonic functions. J. Lond. Math. Soc. 61(3), 789–806 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  69. M. Troyanov, Parabolicity of manifolds. Sib. Adv. Math. 9(4), 125–150 (1999)

    MathSciNet  MATH  Google Scholar 

  70. D. Valtorta, Potenziali di Evans su varietá paraboliche (2009). Available at arXiv:1101.2618

    Google Scholar 

  71. D. Valtorta, Reverse Khas’minskii condition. Math. Z. 270(1), 65–177 (2011)

    MathSciNet  MATH  Google Scholar 

  72. J.D. Weston, A characterization of metric completeness. Proc. Am. Math. Soc. 64(1), 186–188 (1977)

    MathSciNet  MATH  Google Scholar 

  73. H. Wu, Manifolds of partially positive curvature. Indiana Univ. Math. J. 36(3), 525–548 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  74. S.T. Yau, Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  75. S.T. Yau, A general Schwarz lemma for Kähler manifolds. Am. J. Math. 100(1), 197–203 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was completed when the second author was visiting the Abdus Salam International Center for Theoretical Physics (ICTP), Italy. He is grateful for the warm hospitality and for financial support. The authors would also like to thank the organizing and local committees of the INdAM workshop “Contemporary Research in elliptic PDEs and related topics” (Bari, May 30/31, 2017) for the friendly and pleasant environment.

The first author “Luciano Mari” is supported by the grants SNS17_B_MARI and SNS_RB_MARI of the Scuola Normale Superiore.

The second author “Leandro F. Pessoa” was partially supported by CNPq-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Mari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mari, L., Pessoa, L.F. (2019). Maximum Principles at Infinity and the Ahlfors-Khas’minskii Duality: An Overview. In: Dipierro, S. (eds) Contemporary Research in Elliptic PDEs and Related Topics. Springer INdAM Series, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-18921-1_10

Download citation

Publish with us

Policies and ethics