Skip to main content

Biocontrol Agents: Potential of Biopesticides for Integrated Pest Management

  • Chapter
  • First Online:
Biofertilizers for Sustainable Agriculture and Environment

Part of the book series: Soil Biology ((SOILBIOL,volume 55))

Abstract

Active compounds of biological origin and their synthetic derivatives are in high demand for crop protection over conventional pesticides since synthetic chemicals have reduced availability, adverse toxicological effects, and resistance and pest resurgence issues. Insecticides of biological origin (biopesticides) are less toxic and effective in small quantities and decompose quickly, leaving not much burden on environment. These are mostly target-specific and do not affect nontarget organisms much. Many of the bacteria, fungi, viruses, nematodes, protozoans, plants or plant-derived products (botanicals), pathogen/predator systems, insect pheromones, and plant-incorporated protectants (PIPs) are widely used as biological control agents for insect pest management (IPM). Among all, Bacillus thuringiensis-based biological insecticide has been primarily developed and commercialized. Biotechnological approaches such as transgenic technology and nanotechnology have recently come up that have potential to enhance expression and delivery mechanisms of biopesticide. Though the list is huge, only a limited number of living system-derived compounds have been used commercially, which are amenable to mass production and affordable to the growers. This chapter addresses the recent status of microbial control agents as biopesticides, which is used to improve agricultural productivity by restricting pest infestation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhurst R, Smith K (2002) 15 Regulation and safety. In: Gaugler R (ed) Entomopathogenic nematology. CABI, New York, pp 311–332

    Chapter  Google Scholar 

  • Atwa AA (2014) Entomopathogenic nematodes as biopesticides. In: Sahayraj K (ed) Basic and applied aspects of biopesticides. Springer, New Delhi, pp 69–98

    Google Scholar 

  • Barbara DJ, Clewes E (2003) Plant pathogenic Verticillium species: how many of them are there? Mol Plant Pathol 4(4):297–305

    Article  CAS  PubMed  Google Scholar 

  • Bedford GO (1980) Biology, ecology, and control of palm rhinoceros beetles. Annu Rev Entomol 25(1):309–339

    Article  Google Scholar 

  • Birch ANE, Begg GS, Squire GR (2011) How agro-ecological research helps to address food security issues under new IPM and pesticide reduction policies for global crop production systems. J Exp Botany 62(10):3251–3261

    Article  CAS  Google Scholar 

  • Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423–435

    Article  CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2012) GM crops: global socio-economic and environmental impacts 1996–2010. PG Economics Ltd. http://www.pgeconomics.co.uk/page/33/global-impact-2012

  • Chandler D, Davidson G, Grant WP, Greaves J, Tatchell GM (2008) Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Technol 19(5):275–283

    Article  CAS  Google Scholar 

  • Chandler D, Bailey AS, Tatchell GM, Davidson G, Greaves J, Grant WP (2011) The development, regulation and use of biopesticides for integrated pest management. Philos Trans R Soc Lond B Biol Sci 366(1573):1987–1998

    Article  PubMed  PubMed Central  Google Scholar 

  • Cole M, Rolinson GN (1972) Microbial metabolites with insecticidal properties. Appl Microbiol 24(4):660–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crickmore, N., et al. (2014) Bacillus thuringiensis toxin nomenclature. Available in: http://www.lifesci.sussex.ac.uk/Home/Neil_Crickmore/Bt/. Accessed 14 2015

  • Crump NS, Cother EJ, Ash GJ (1999) Clarifying the nomenclature in microbial weed control. Biocontrol Sci Tech 9(1):89–97

    Article  Google Scholar 

  • de Maagd RA, Bravo A, Crickmore N (2001) How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17(4):193–199

    Article  PubMed  Google Scholar 

  • De Oliveira JL, Campos EV, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561

    Article  PubMed  Google Scholar 

  • De Souza DJ, Van Vlaenderen J, Moret Y, Lenoir A (2008) Immune response affects ant trophallactic behaviour. J Insect Physiol 54(5):828–832

    Article  PubMed  Google Scholar 

  • Douches DS, Li W, Zarka K, Coombs J, Pett W, Grafius E, El-Nasr T (2002) Development of Bt-cry5 insect-resistant potato lines ‘Spunta-G2’ and ‘Spunta-G3’. Hort Sci 37(7):1103–1107

    Article  CAS  Google Scholar 

  • Dougherty EM, Narang N, Loeb M, Lynn DE, Shapiro M (2006) Fluorescent brightener inhibits apoptosis in baculovirus-infected gypsy moth larval midgut cells in vitro. Biocontrol Sci Tech 16(2):157–168

    Article  Google Scholar 

  • Dowds BC, Peters AR (2002) Virulence mechanisms. In: Gaugler R (ed) Entomopathogenic nematology. CABI, New York, pp 79–98

    Chapter  Google Scholar 

  • Ehlers RU, Shapiro-Ilan DI (2005) Mass production. Nematodes as biocontrol agents. In: Grewal P (ed) Nematodes as biological control agents. CABI, Wallingford, pp 65–78

    Chapter  Google Scholar 

  • Fisher TW, Garczynski SF (2012) Isolation, culture, preservation, and identification of entomopathogenic bacteria of the Bacilli. In: Lacey LA (ed) Manual of techniques in invertebrate pathology. Academic Press, London, pp 75–98

    Chapter  Google Scholar 

  • Frank JH (2009) Steinernema scapterisci as a biological control agent of Scapteriscus mole crickets. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 115–131

    Chapter  Google Scholar 

  • Frank JH, Walker TJ (2006) Permanent control of pest mole crickets (Orthoptera: Gryllotalpidae: Scapteriscus) in Florida. Am Entomol 52(3):138–144

    Article  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  PubMed  Google Scholar 

  • Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98(3):256–261

    Article  CAS  PubMed  Google Scholar 

  • Grewal P, Georgis R (1999) Entomopathogenic nematodes. In: Hall FR, Menn JJ (eds) Biopesticides: use and delivery. Humana Press, Totowa, pp 271–299

    Google Scholar 

  • Gupta S, Dikshit AK (2010) Biopesticides: an ecofriendly approach for pest control. J Biopest 3(1):186–188

    Google Scholar 

  • Hudson WG, Frank JH, Castner JL (1988) Biological control of Scapteriscus spp. mole crickets (Orthoptera: Gryllotalpidae) in Florida. Bull Entomol Soc Am 34:192–198

    Google Scholar 

  • Huger AM (1966) A virus disease of the Indian rhinoceros beetle, Oryctes rhinoceros (Linnaeus), caused by a new type of insect virus, Rhabdionvirus oryctes gen. n., sp. n. J Invertebr Pathol 8(1):38–51

    Article  CAS  PubMed  Google Scholar 

  • Huger AM (2005) The Oryctes virus: its detection, identification, and implementation in biological control of the coconut palm rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae). J Invertebr Pathol 89(1):78–84

    Article  PubMed  Google Scholar 

  • Hughes PR, Wood HA, Breen JP, Simpson SF, Duggan AJ, Dybas JA (1997) Enhanced bioactivity of recombinant baculoviruses expressing insect-specific spider toxins in lepidopteran crop pests. J Invertebr Pathol 69(2):112–118

    Article  CAS  PubMed  Google Scholar 

  • Hynes RK, Boyetchko SM (2006) Research initiatives in the art and science of biopesticide formulations. Soil Biol Biochem 38:45–849

    Article  Google Scholar 

  • Ilan T, Kim-Shapiro DB, Bock CH, Shapiro-Ilan DI (2013) Magnetic and electric fields induce directional responses in Steinernema carpocapsae. Int J Parasitol 43:781–784

    Article  PubMed  Google Scholar 

  • Jackson TA (2009) The use of Oryctes virus for control of rhinoceros beetle in the Pacific Islands. In: Hajek AE, Glare TR, O’Callaghan M (eds) Use of microbes for control and eradication of invasive arthropods. Springer, Dordrecht, pp 133–140

    Chapter  Google Scholar 

  • Jackson TA, Crawford AM, Glare TR (2005) Oryctes virus—time for a new look at a useful biocontrol agent. J Invertebr Pathol 89(1):91–94

    Article  PubMed  Google Scholar 

  • Jurat-Fuentes JL, Jackson TA (2012) Bacterial entomopathogens. In: Insect pathology. Academic Press, San Diego, pp 265–349

    Chapter  Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38(1):181–206

    Article  Google Scholar 

  • Kennedy GG (2008) Integration of insect-resistant genetically modified crops within IPM programs. In: Romeis J, Shelton A, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp 1–26

    Google Scholar 

  • Khachatourians GG (2009) Insecticides, microbials. Applied Microbiology: Agro/Food 95–109

    Chapter  Google Scholar 

  • Killick HJ (1990) Influence of droplet size, solar ultraviolet light and protectants, and other factors on the efficacy of baculovirus sprays against Panolis flammea (Schiff.) (Lepidoptera: Noctuidae). Crop Prot 9(1):21–28

    Article  Google Scholar 

  • Kim JJ, Goettel MS, Gillespie DR (2010) Evaluation of Lecanicillium longisporum, Vertalec® against the cotton aphid, Aphis gossypii, and cucumber powdery mildew, Sphaerotheca fuliginea in a greenhouse environment. Crop Prot 29(6):540–544

    Article  Google Scholar 

  • Klein M (1990) Efficacy against soil-inhabiting insect pests. ln: Gaugler, R and Kaya HK (ed) Entomopathogenic nema-IOdes in biological control. CRC Press, Boca Raton, FL, pp 365

    Google Scholar 

  • Koike M, Shinya R, Aiuchi D, Mori M, Ogino R, Shinomiya H, Tani M, Goettel M (2011) Future biological control for soybean cyst nematode. In: El-Shemy HA (ed) Soybean physiology and biochemistry. Intech Open Access, Croatia, pp 193–208

    Google Scholar 

  • Koppenhöfer AM et al. (2003) Effect of neonicotinoid synergists on entomopathogenic nematode fitness. Entomol Exp Appl 106(1):7–18

    Article  Google Scholar 

  • Koul O, Cuperus GW, Elliott N (eds) (2008) Areawide pest management: theory and implementation. CABI, Oxfordshire

    Google Scholar 

  • Koul O, Cuperus GW (2007) Ecologically based integrated pest management: present concept and new solutions. In: Koul O, Cuperus GW, Norman E (eds) Ecologically based integrated pest management. CABI, Wallingford, pp 1–17

    Chapter  Google Scholar 

  • Kroschel J, Lacey LA (2009) Integrated pest management for the potato tuber moth, Phthorimaea operculella (Zeller) – a potato pest of global importance. In: Kroschel J, Lacey LA (eds) Tropical agriculture 20, advances in crop research 10. Margraf Publishers, Weikersheim, p 147

    Google Scholar 

  • Kumar S (2012) Biopesticides: a need for food and environmental safety. J Biofertil Biopestic 3(4):1–3

    Article  CAS  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  PubMed  Google Scholar 

  • Lasa R, Ruiz-Portero C, Alcázar MD, Belda JE, Caballero P, Williams T (2007) Efficacy of optical brightener formulations of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) as a biological insecticide in greenhouses in southern Spain. Biol Control 40(1):89–96

    Article  CAS  Google Scholar 

  • LeBoeuf AC, Waridel P, Brent CS, Gonçalves AN, Menin L, Ortiz D, Riba-Grognuz O, Koto A, Soares ZG, Privman E, Miska EA (2016) Oral transfer of chemical cues, growth proteins and hormones in social insects. elife 5:e20375

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species: a selection from the global invasive species database (Vol. 12). Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), Auckland pp 12. www.issg.org/booklet.pdf

  • Mazid S, Kalita JC, Rajkhowa RC (2011) A review on the use of biopesticides in insect pest management. Int J Sci Adv Technol 1(7):169–178

    Google Scholar 

  • Miranpuri GS, Khachatourians GG (1995) Entomopathogenicity of Beauveria bassiana toward flea beetles, Phyllotreta cruciferae Goeze (Col., Chrysomelidae). J Appl Entomol 119:167–170

    Article  Google Scholar 

  • Moscardi F, de Souza ML, de Castro MEB, Moscardi ML, Szewczyk B (2011) Baculovirus pesticides: present state and future perspectives. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology. Springer, New York, pp 415–445

    Chapter  Google Scholar 

  • Okuno S, Takatsuka J, Nakai M, Ototake S, Masui A, Kunimi Y (2003) Viral-enhancing activity of various stilbene-derived brighteners for a Spodoptera litura (Lepidoptera: Noctuidae) nucleopolyhedrovirus. Biol Control 26(2):146–152

    Article  Google Scholar 

  • Parkman JP, Hudson WG, Frank JH, Nguyen KB, Smart GC Jr (1993) Establishment and persistence of Steinernema scapterisci (Rhabditida: Steinernematidae) in field populations of Scapteriscus spp. mole crickets (Orthoptera: Gryllotalpidae). J Entomol Sci 28(2):182–190

    Article  Google Scholar 

  • Pineda S, Alatorre R, Schneider ML, Martinez AM (2007) Pathogenicity of two entomopathogenic fungi on Trialeurodes vaporariorum and field evaluation of a Paecilomyces fumosoroseus isolate. Southwest Entomol 32(1):43–52

    Article  Google Scholar 

  • Poinar GO Jr (1979) Nematode groups. In: Poinar GO Jr (ed) Nematodes for biological control of insects. CRC Press, Boca Raton, FL, pp 277–289

    Google Scholar 

  • Poinar GO Jr (1990) Taxonomy and biology of Steinernematidae and Heterorhabditidae. In: Guagler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, FL, pp 23–61

    Google Scholar 

  • Qiu HL, Lu LH, Shi QX, He YR (2014) Fungus exposed Solenopsis invicta ants benefit from grooming. J Insect Behav 27(5):678–691

    Article  Google Scholar 

  • Qiu HL, Lu LH, Shi QX, Tu CC, Lin T, He YR (2015) Differential necrophoric behaviour of the ant Solenopsis invicta towards fungal-infected corpses of workers and pupae. Bull Entomol Res 105(5):607–614

    Article  CAS  PubMed  Google Scholar 

  • Qiu HL, Lu LH, Zalucki MP, He YR (2016) Metarhizium anisopliae infection alters feeding and trophallactic behavior in the ant Solenopsis invicta. J Invertebr Pathol 138:24–29

    Article  PubMed  Google Scholar 

  • Ramle M, Wahid MB, Norman K, Glare TR, Jackson TA (2005) The incidence and use of Oryctes virus for control of rhinoceros beetle in oil palm plantations in Malaysia. J Invertebr Pathol 89(1):85–90

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo-Simón A, Caccia S, Ferré J (2008) Bacillus thuringiensis Cry1Ac toxin-binding and pore-forming activity in brush border membrane vesicles prepared from anterior and posterior midgut regions of lepidopteran larvae. Appl Environ Microbiol 74(6):1710–1716

    Article  PubMed  PubMed Central  Google Scholar 

  • Rojas MG, Elliott RB, Morales-Ramos JA (2018) Mortality of Solenopsis invicta workers (Hymenoptera: Formicidae) after indirect exposure to spores of three entomopathogenic fungi. J Insect Sci 18(3):20

    Article  PubMed Central  Google Scholar 

  • Sarwar M (2015) Biopesticides: an effective and environmental friendly insect-pests inhibitor line of action. Int J Eng Adv Res Tech 1(2):10–15

    Google Scholar 

  • Schnepf E, Crickmore NV, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):775–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 56(7):1267–1274

    Article  CAS  PubMed  Google Scholar 

  • Shapiro-Ilan DI, Gouge DH, Piggott SJ, Fife JP (2006) Application technology and environmental considerations for use of entomopathogenic nematodes in biological control. Biol Control 38(1):124–133

    Article  Google Scholar 

  • Srinivasa M, Jagadeesh Babu CS, Anitha CN, Girish G (2008) Laboratory evaluation of available commercial formulations of HaNPV against Helicoverpa armigera (Hub.). J Biopest 1(2):138–139

    CAS  Google Scholar 

  • Storey GK (1990) Chemical defenses of the fire ant, Solenopsis invicta Buren, against infection by the fungus, Beauveria bassiana (Balsamo) Vuill. Doctoral dissertation, University of Florida, Gainseville

    Google Scholar 

  • Strasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? Biocontrol Sci Tech 10(6):717–735

    Article  Google Scholar 

  • Tomalski MD, Miller LK (1991) Insect paralysis by baculovirus-mediated expression of a mite neurotoxin gene. Nature 352(6330):82

    Article  CAS  PubMed  Google Scholar 

  • Torr P, Heritage S, Wilson MJ (2004) Vibrations as a novel signal for host location by parasitic nematodes. Int J Parasitol 34(9):997–999

    Article  CAS  PubMed  Google Scholar 

  • Van Frankenhuyzen K (2009) Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol 101(1):1–16

    Article  PubMed  Google Scholar 

  • Wang L, Elliott B, Jin X, Zeng L, Chen J (2015) Antimicrobial properties of nest volatiles in red imported fire ants, Solenopsis invicta (hymenoptera: formicidae). Sci Nat 102(11–12):66

    Article  Google Scholar 

  • Wei JZ, Hale K, Carta L, Platzer E, Wong C, Fang SC, Aroian RV (2003) Bacillus thuringiensis crystal proteins that target nematodes. Proc Natl Acad Sci 100(5):2760–2765

    Article  CAS  PubMed  Google Scholar 

  • Whalon ME, Wingerd BA (2003) Bt: mode of action and use. Arch Insect Biochem Physiol: Published in Collaboration with the Entomological Society of America 54(4):200–211

    Article  CAS  Google Scholar 

  • Wraight SP, Sporleder M, Poprawski TJ, Lacey LA (2007) Application and evaluation of entomopathogens in potato. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology. Springer, Dordrecht, pp 329–359

    Chapter  Google Scholar 

  • Wraight SP, Hajek AE, Radcliffe EB (2009) Manipulation of arthropod pathogens for IPM. In: Radcliffe EB, Hutchison WD, Cancelado RE (eds) Integrated pest management: concepts, tactics, strategies and case studies. Cambridge University Press, Cambridge, pp 131–150

    Google Scholar 

  • Zelazny B (1972) Studies on Rhabdionvirus oryctes: I. Effect on larvae of Oryctes rhinoceros and inactivation of the virus. J Invertebr Pathol 20(3):235–241

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Archana Singh or Indrakant K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A., Bhardwaj, R., Singh, I.K. (2019). Biocontrol Agents: Potential of Biopesticides for Integrated Pest Management. In: Giri, B., Prasad, R., Wu, QS., Varma, A. (eds) Biofertilizers for Sustainable Agriculture and Environment . Soil Biology, vol 55. Springer, Cham. https://doi.org/10.1007/978-3-030-18933-4_19

Download citation

Publish with us

Policies and ethics