Skip to main content

Impact of Salinity Stress on Growth and Development of Aquatic Fungi

  • Chapter
  • First Online:
Microorganisms in Saline Environments: Strategies and Functions

Part of the book series: Soil Biology ((SOILBIOL,volume 56))

  • 1225 Accesses

Abstract

In most ecosystems salinity shapes biotic assemblages, representing a key environmental factor. This variable is regarded as a major threat to microbial communities in terrestrial systems, modifying considerably a number of important ecosystem processes, including turnover of organic matter and nutrients acquisition. However, complex effects of salinity remain poorly understood, especially for non-model aquatic microbial assemblages, which account for most of the biodiversity in natural systems. Aquatic fungi are a widespread and phylogenetically heterogeneous group of microorganisms, occurring in marine, estuarine, and freshwater systems. These osmotrophs are completely adapted to rapidly colonize, grow, and reproduce in aquatic systems, where salinity represents a frequently fluctuating environmental variable. Some investigations have approached aquatic fungal response to salinity, suggesting that despite these microorganisms are able to survive under osmotic stress conditions, this variable may select for distinctive community compositions. At large, fungal responses to salinity stress are determined by taxon-specific underlying physiological traits, leading to distinctive tolerance thresholds. Herein, we review the impact of salinity on growth and development of aquatic fungi, integrating literature reports on marine and freshwater species, and recent advances introducing molecular techniques to provide better understanding of the phenomenon of aquatic fungal salinity tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ananda K, Sridhar KR (2004) Diversity of filamentous fungi on decomposing leaf and woody litter of mangrove forests in the southwest coast of India. Curr Sci 87:1431–1437

    Google Scholar 

  • Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467

    Google Scholar 

  • Bärlocher F, Kendrick B (1974) Dynamics of the fungal populations on leaves in a stream. J Ecol 62:761–791

    Article  Google Scholar 

  • Burgaud G, Woehlke S, Rédou V, Orsi W, Beaudoin D, Barbier G, Biddle JF, Edgcomb VP (2013) Deciphering the presence and activity of fungal communities in marine sediments using a model estuarine system. Aquat Microb Ecol 70:45–62

    Article  Google Scholar 

  • Byrne PJ, Jones EBG (1975a) Effect of salinity on the reproduction of terrestrial and marine fungi. Trans Br Mycol Soc 65:185–200

    Article  Google Scholar 

  • Byrne PJ, Jones EBG (1975b) Effect of salinity on spore germination of terrestrial and marine fungi. Trans Br Mycol Soc 64:497–503

    Article  Google Scholar 

  • Calado M, Carvalho L, Pang KL, Barata M (2015) Diversity and ecological characterization of sporulating higher filamentous marine fungi associated with Spartina maritima (Curtis) Fernald in two Portuguese salt marshes. Microb Ecol 70:612–633

    Article  Google Scholar 

  • Cheeseman J (2016) Food security in the face of salinity, drought, climate change, and population growth. In: Uham M (ed) Halophytes for food security in dry lands. Academic Press, San Diego, pp 111–123

    Chapter  Google Scholar 

  • Clipson NJW, Jennings DH (1992) Dendryphiella salina and Debaryomyces hansenii: models for ecophysiological adaptation to salinity by fungi which grow in the sea. Can J Bot 70:2097–2105

    Article  Google Scholar 

  • Cox PW, Clipson NJW, Hooley P, Thomas CR (1995) Effects of growth medium solute concentration upon the spore germination and colony growth characteristics of Aspergillus nidulans. Proceedings of the Institution of Chemical Engineers Research Event, Edinburgh 2:986–988

    CAS  Google Scholar 

  • Crossland NO, La Point TW (1992) The design of mesocosm experiments. Environ Toxicol Chem 11:1–4

    Article  Google Scholar 

  • Danger M, Gessner MO, Bärlocher F (2016) Ecological stoichiometry of aquatic fungi: current knowledge and perspectives. Fungal Ecol 19:100–111

    Article  Google Scholar 

  • De la Cruz TE, Wagner S, Schulz B (2006) Physiological responses of marine Dendryphiella species from different geographical locations. Mycol Prog 5:108–119

    Article  Google Scholar 

  • Dewey DR (1960) Salt tolerance of twenty-five strains of Agropyron 1. Agron J 52:631–635

    Article  Google Scholar 

  • Deyholos MK (2010) Making the most of drought and salinity transcriptomics. Plant Cell Environ 33:648–654

    Article  CAS  PubMed  Google Scholar 

  • Doguet G (1968) Nia vibrissa Moore et Meyers, Gasteromycete marin. I. Conditions generates de formation des carpophores en culture. Bull Soc Mycol Fr 84:343–351

    Google Scholar 

  • Doguet G (1969) Nia vibrissa Moore et Meyers, Gasteromycete marin. II. Developpement des carpophores et des basides. Bull Soc Mycol Fr 85:93–104

    Google Scholar 

  • Edwards J, Chamberlain D, Brosnan G, West D, Stanley MS, Clipson NJW, Hooley P (1998) A comparative physiological and morphological study of Dendryphiella salina and D. arenaria in relation to adaptation to life in the sea. Mycol Res 102:1198–1202

    Article  Google Scholar 

  • El-Abyad MS, Hindorf H, Rizk MA (1988) Impact of salinity stress on soil-borne fungi of sugarbeet. Plant Soil 110:27–32

    Article  Google Scholar 

  • Elliott M, Quintino V (2007) The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Mar Pollut Bull 54:640–645

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher S, Likens G (1973) Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol Monogr 43:421–439

    Article  Google Scholar 

  • Fortunato CS, Crump BC (2015) Microbial gene abundance and expression patterns across a river to ocean salinity gradient. PLoS One 10:e0140578

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, DeLong EF (2008) Microbial community gene expression in ocean surface waters. PNAS 105:3805–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galpin MF, Jennings DH (1975) Histochemical study of the hyphae and the distribution of adenosine triphosphatase in Dendryphiella salina. Trans Br Mycol Soc 65:477–483

    Article  Google Scholar 

  • Gibb FM, Wethered JM, Jennings DH (1986) The effect of monovalent ions on enzyme activity in Dendryphiella salina. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 27–33

    Google Scholar 

  • Gilbert JA, Field D, Huang Y, Edwards R, Li W, Gilna P, Joint I (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3:e3042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • González MC, Hanlin RT (2010) Potential use of marine arenicolous ascomycetes as bioindicators of ecosystem disturbance on sandy Cancun beaches: Corollospora maritima as a candidate species. Bot Mar 53:577–580

    Article  Google Scholar 

  • Gostinčar C, Lenassi M, Gunde-Cimerman N, Plemenitaš A (2011) Fungal adaptation to extremely high salt concentrations. Adv Appl Microbiol 77:71–96

    Article  PubMed  CAS  Google Scholar 

  • Harris G (2009) Salinity. In: Tochner K, Likens GE (eds) Encyclopedia of inland waters, vol 2. Oxford University Press/Elsevier, Oxford, pp 79–84

    Chapter  Google Scholar 

  • Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardón M, Hopfensperger KN, Lamers LPM, Gell P (2015) A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6:1–43

    Article  Google Scholar 

  • Hintz WD, Relyea RA (2017) A salty landscape of fear: responses of fish and zooplankton to freshwater salinization and predatory stress. Oecologia 185:147–156

    Article  PubMed  Google Scholar 

  • Holligan PM, Jennings DH (1972) Carbohydrate metabolism in the fungus Dendryphiella salina. II. The influence of different carbon and nitrogen sources on the accumulation of mannitol and arabitol. New Phytol 71:583–594

    Article  Google Scholar 

  • Huang J, Lu C, Qian X, Huang Y, Zheng Z, Shen Y (2011) Effect of salinity on the growth, biological activity and secondary metabolites of some marine fungi. Acta Oceanol Sin 30:118–123

    Article  CAS  Google Scholar 

  • Hughes GC (1969) Marine fungi from British Columbia: occurrence and distribution of lignicolous species. Syesis 2:121–140

    Google Scholar 

  • Hyde KD (1988) Studies on the tropical marine fungi of Brunei. Bot J Linn Soc 98:135–151

    Article  Google Scholar 

  • Hyde KD (1989) Vertical zonation of intertidal mangrove fungi. In: Hattori T, Ishida Y, Maeuyama Y, Morita RY, Uchida A (eds) Recent advances in microbial ecology. Japan Scientific Societies Press, Tokyo, pp 302–306

    Google Scholar 

  • Hyde KD (1990a) A study of the vertical zonation of intertidal fungi on Rhizophora apiculata at Kampong Kapok mangrove, Brunei. Aquat Bot 36:255–262

    Article  Google Scholar 

  • Hyde KD (1990b) A comparison of the intertidal mycota of five mangrove tree species. Asian Mar Biol 7:93–107

    Google Scholar 

  • Hyde KD (1993) The distribution of intertidal fungi on Rhizophora apiculata. In: Morton B (ed) The marine biology of the South China Sea. Proceedings of the First International Conference on the Marine Biology of Hong Kong and the South China Sea. Hong Kong University Press, Hong Kong, pp 643–652

    Google Scholar 

  • Hyde KD, Jones EBG (1988) Marine mangrove fungi. Mar Ecol 9:15–33

    Article  Google Scholar 

  • Ittner LD, Junghans M, Werner I (2018) Aquatic fungi: a disregarded trophic level in ecological risk assessment of organic fungicides. Front Environ Sci 6:105

    Article  Google Scholar 

  • James KR, Cant B, Ryan T (2003) Responses of freshwater biota to rising salinity levels and implications for saline water management: a review. Austral J Bot 51:703–713

    Article  CAS  Google Scholar 

  • Jennings DH (1983) Some aspects of the physiology and biochemistry of marine fungi. Biol Rev 58:423–459

    Article  CAS  Google Scholar 

  • Jennings DH (1986) Some aspects of the physiology and biochemistry of marine fungi. Biol Rev 58:423–459

    Article  Google Scholar 

  • Johnson TW, Sparrow FK (1961) Fungi in oceans and estuaries. Cramer, Weinheim

    Google Scholar 

  • Jones EBG (1972) The decay of timber in aquatic environments. Br Wood Presery Assoc Annu Cony:1–18

    Google Scholar 

  • Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4:53–73

    Google Scholar 

  • Jones EBG (2006) Form and function of fungal spore appendages. Mycoscience 47:167–183

    Article  CAS  Google Scholar 

  • Jones EBG (2011) Fifty years of marine mycology. Fungal Divers 50:73–112

    Article  Google Scholar 

  • Jones EBG, Harrison JL (1976) Physiology of marine Phycomycetes. In: EBG J (ed) Recent advances in aquatic mycology. Wiley, New York, pp 261–278

    Google Scholar 

  • Jones EBG, Jennings DH (1964) The effect of salinity on the growth of marine fungi in comparison with non-marine species. Trans Br Mycol Soc 47:619–625

    Article  Google Scholar 

  • Jones EBG, Byrne P, Alderman DJ (1971) The response of fungi to salinity. Vie Milieu Suppl 22:265–280

    Google Scholar 

  • Kirk PW, Dyer BJ, Noé J (1991) Hydrocarbon utilization by higher marine fungi from diverse habitats and localities. Mycologia 83:227–230

    Article  CAS  Google Scholar 

  • Kis-Papo T, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol 45:183–190

    Article  CAS  PubMed  Google Scholar 

  • Koch MS, Schopmeyer SA, Kyhn-Hansen C, Madden CJ, Peters JS (2007) Tropical seagrass species tolerance to hypersalinity stress. Aquat Bot 86:14–24

    Article  CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1971) Synoptic plates of higher marine fungi. Lehre Verlag von J Cramer, 87 pp

    Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher fungi. Academic Press, New York

    Google Scholar 

  • Kutty SN, Philip R (2008) Marine yeasts—a review. Yeast 25:465–483

    Article  CAS  PubMed  Google Scholar 

  • Lercari D, Defeo O (2006) Large-scale diversity and abundance trends in sandy beach macrofauna along full gradients of salinity and morphodynamics. Estuar Coast Shelf Sci 68:27–35

    Article  Google Scholar 

  • Lewis E (1980) The practical salinity scale 1978 and its antecedents. J Ocean Eng 5:3–8

    Article  Google Scholar 

  • Lorenz R, Molitoris HP (1992) Combined influence of salinity and temperature (Phoma-pattern) on growth of marine fungi. Can J Bot 70:2111–2115

    Article  Google Scholar 

  • Mahé S, Rédou V, Le Calvez T, Vandenkoornhuyse P, Burgaud G (2014) Fungi in deep-sea environments and metagenomics. In: Martin F (ed) The ecological genomics of fungi. Wiley-Blackwell, Ames, pp 325–354

    Google Scholar 

  • Masuma R, Yamaguchi Y, Noumi M, Omura S, Namikoshi M (2001) Effect of seawater concentration on hyphal growth and antimicrobial metabolite production in marine fungi. Mycoscience 42:455–459

    Article  CAS  Google Scholar 

  • McEvoy P, Goonan P (2003) Salinity is not necessarily bad for biodiversity: case studies of invertebrates from South Australian streams and River Murray wetlands. Rec South Aus Mus 7:131–134

    Google Scholar 

  • Meyers SP (1968) Degradative activities of filamentous marine fungi. In: Walters AH, Elpjhick JJ (eds) Biodeterioration of materials. Elsevier, Amsterdam, pp 594–609

    Google Scholar 

  • Meyers SP, Hoyo L (1966) Observations on the growth of the marine hyphomycete Varicosporina ramulosa. Can J Bot 44:1133–1140

    Article  Google Scholar 

  • Molina FI, Hughes GC (1982) The growth of Zalerion maritimum (Linder) Anastasiou in response to variation in salinity and temperature. J Exp Mar Biol Ecol 61:147–156

    Article  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nakagiri A, Ito T (1994) Aniptodera salsuginosa, a new mangrove-inhabiting ascomycete, with observations on the effect of salinity on ascospore appendage morphology. Mycol Res 98:931–936

    Article  Google Scholar 

  • Odum EP (1984) The mesocosm. BioScience 34:558–562

    Article  Google Scholar 

  • Overy DP, Bayman P, Kerr RG, Bills GF (2014) An assessment of natural product discovery from marine (sensu strictu) and marine-derived fungi. Mycology 5:145e167

    Google Scholar 

  • Pang KL, Overy DP, Jones EG, da Luz CM, Burgaud G, Walker AK, Johnson JA, Russell GK, Cha H, Bills GF (2016) ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: toward a new consensual definition. Fungal Biol Rev 30:163–175

    Article  Google Scholar 

  • Petersen KRL, Koch J (1997) Substrate preference and vertical zonation of lignicolous marine fungi on mooring posts of oak (Querens sp.) and larch (Larix sp.) in Svanemøllen Harbour, Denmark. Bot Mar 40:451–464

    Article  Google Scholar 

  • Pianka ER (1974) Niche overlap and diffuse competition. PNAS 71:2141–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pointing BS, Vrijmoed LLP, Jones EBG (1998) A quantitative assessment of lignocellulose degrading enzyme activity in marine fungi. Bot Mar 412:293–298

    Article  Google Scholar 

  • Pointing BS, Buswell JA, Jones EBG, Vrijmoed LLP (1999) Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi. Mycol Res 103:690–700

    Article  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Pringle A, Taylor JW (2002) The fitness of filamentous fungi. Trends Microbiol 10:474–481

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Ritchie D (1959) The effect of salinity and temperature on marine and other fungi from various climates. Bull Torrey Bot Cl 86:367–373

    Article  Google Scholar 

  • Rodríguez-García A, Sola-Landa A, Barreiro C (2017) RNA-Seq-based comparative transcriptomics: RNA preparation and bioinformatics. Methods Mol Biol 1645:59–72

    Article  PubMed  CAS  Google Scholar 

  • Schaumann K (1968) Marine hohere Pilze (Ascomycetes und Fungi imperfecti) aus Dem Weser-Astuar. Veroeff Institue Meeresfrosch Bremerh 11:93–117

    Google Scholar 

  • Schaumann K (1969) Ober marine hogere Pilze von Holzsubstraten der Nordsee-Insel Helgoland. Ber Deutsch Bot Ges 82:307–327

    Google Scholar 

  • Shearer CA (1972) Fungi of the Chesapeake Bay and its tributaries. III. The distribution of wood-inhabiting ascomycetes and fungi imperfecti of the Patuxent River. Am J Bot 59:961–969

    Article  Google Scholar 

  • Shearer CA (1993) The freshwater ascomycetes. Nova Hedwigia 56:1–33

    Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marmanová L, Padgett D, Porter D, Raja HA, Schmit PJ, Thorton HA, Voglymayr H (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16:49–67

    Article  Google Scholar 

  • Shi Y, Tyson GW, DeLong EF (2009) Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature 459:266

    Article  CAS  PubMed  Google Scholar 

  • Smyth K, Elliott M (2016) Effects of changing salinity on the ecology of the marine environment. In: Solan M, Whiteley NM (eds) Stressors in the marine environment. Oxford University Press, Oxford, pp 161–174

    Chapter  Google Scholar 

  • Stewart RH (2008) Introduction to physical oceanography. Texas A & M University, College Station

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  • Sundari R, Vickineswary S, Yusoff M, Jones EBG (1996a) Corollospora besarispora (Halosphaeriales, Ascomycotina), a new marine fungus from Malaysia. Mycol Res 100:1259–1262

    Article  Google Scholar 

  • Sundari R, Vickineswary S, Yusoff M, Jones EBG (1996b) Observations on tropical arenicolous marine fungi on driftwood from Malaysia and Singapore. Bot Mar 39:361–375

    Article  Google Scholar 

  • Tan TK, Leong WF, Jones EBG (1989) Succession of fungi on wood of Avicennia alba and A. lanata in Singapore. Can J Bot 67:2686–2691

    Article  Google Scholar 

  • Tanimoto TT (1969) Differential physiological response of sugarcane varieties to osmotic pressures of saline media. Crop Sci 9:683–688

    Article  Google Scholar 

  • Torzili AP (1997) Tolerance to high temperature and salt stress by a salt marsh isolate of Aureobasidium pullulans. Mycologia 89:786–792

    Article  Google Scholar 

  • Tresner HD, Hayes JA (1971) Sodium chloride tolerance of terrestrial fungi. Appl Environ Microbiol 22:210–213

    CAS  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Article  CAS  Google Scholar 

  • Velez P, Alejandri-Ramírez ND, González MC, Estrada KJ, Sanchez-Flores A, Dinkova TD (2015a) Comparative transcriptome analysis of the cosmopolitan marine fungus Corollospora maritima under two physiological conditions. G3-Genes Genom Genet 5:1805–1814

    CAS  Google Scholar 

  • Velez P, Gonzalez MC, Capello-García S, Rosique-Gil E, Hanlin RT (2015b) Diversity of marine ascomycetes from the disturbed sandy beaches of Tabasco, Mexico. J Mar Biol Assoc UK 95:897–903

    Article  Google Scholar 

  • Wethered JM, Jennings DH (1985) Major solutes contributing to solute potential of Thraustochytrium aureum and T. roseum after growth in media of different salinities. Trans Br Mycol Soc 85:439–446

    Article  CAS  Google Scholar 

  • Wethered JM, Metcalf EC, Jennings DH (1985) Carbohydrate metabolism in the fungus Dendryphiella salina: VIII. The contribution of polyols and ions to the mycelial solute potential in relation to the external osmoticum. New Phytol 101:631–649

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Velez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velez, P. (2019). Impact of Salinity Stress on Growth and Development of Aquatic Fungi. In: Giri, B., Varma, A. (eds) Microorganisms in Saline Environments: Strategies and Functions. Soil Biology, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-030-18975-4_7

Download citation

Publish with us

Policies and ethics