Skip to main content

Applying Ontology-Informed Lattice Reduction Using the Discrimination Power Index to Financial Domain

  • Conference paper
  • First Online:
Enterprise Applications, Markets and Services in the Finance Industry (FinanceCom 2018)

Abstract

Contemporary financial institutions are relying on varied and voluminous data and so they need advanced technologies to provide their customers with the best possible services. Capturing the meaning, or semantics, of data and presenting these semantics in simplified yet relevant models are key challenges to achieving this. Formal Concept Analysis (FCA) automates the analysis of properties and instances of the data, generating a lattice which groups properties and instances into concepts. This lattice can be used as automatically generated semantic structure describing the domain, yet the complexity and size of the resultant lattice render this technique unusable in most practical cases involving financial data. To tackle this, our Ontology-informed Lattice Reduction approach can guide the reduction of the lattices generated from financial sampled data. We validate the adaptation of the approach to the financial domain through a real-world asset allocation case study, demonstrating that the approach achieves good overall performance and relevant results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Exchange Traded Funds or ETFs are a basket of other assets that are designed to trace the performance of an index.

References

  1. De Mauro, A., Greco, M., Grimaldi, M.: A formal definition of big data based on its essential features. Libr. Rev. 65(3), 122–135 (2016)

    Article  Google Scholar 

  2. Singh, P.K., Kumar, C.A., Gani, A.: A comprehensive survey on formal concept analysis, its research trends and applications. Int. J. Appl. Math. Comput. Sci. 26(2), 495–516 (2016)

    Article  MathSciNet  Google Scholar 

  3. Rouane, M.H., Huchard, M., Napoli, A., Valtchev, P.: A proposal for combining formal concept analysis and description logics for mining relational data. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 51–65. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70901-5_4

    Chapter  MATH  Google Scholar 

  4. Dias, S.M., Vieira, N.J.: Concept lattices reduction: definition, analysis and classification. Expert Syst. Appl. 42(20), 7084–7097 (2015)

    Article  Google Scholar 

  5. Ignatov, D.I.: Introduction to formal concept analysis and its applications in information retrieval and related fields. In: Braslavski, P., Karpov, N., Worring, M., Volkovich, Y., Ignatov, D.I. (eds.) RuSSIR 2014. CCIS, vol. 505, pp. 42–141. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25485-2_3

    Chapter  Google Scholar 

  6. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India, pp. 230–235 (2007)

    Google Scholar 

  7. Stumme, G.: Using ontologies and formal concept analysis for organizing business knowledge. In: Becker, J., Knackstedt, R. (eds.) Wissensmanagement mit Referenzmodellen, pp. 163–174. Physica, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Sarmah, A.K., Hazarika, S.M., Sinha, S.K.: Formal concept analysis: current trends and directions. Artif. Intell. Rev. 44(1), 47–86 (2015)

    Article  Google Scholar 

  9. Quboa, Q., Behnaz, A., Mehandjiev, N., Rabhi, F.: Ontology-informed lattice reduction using the discrimination power index. In: Proceedings of the 24th International Conference on Conceptual Structures (ICCS), Marburg, Germany, July 2019

    Google Scholar 

  10. Behnaz, A., Natarajan, A., Rabhi, F.A., Peat, M.: A semantic-based analytics architecture and its application to commodity pricing. In: Feuerriegel, S., Neumann, D. (eds.) FinanceCom 2016. LNBIP, vol. 276, pp. 17–31. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52764-2_2

    Chapter  Google Scholar 

  11. LaValle, S., Lesser, E., Shockley, R., Hopkins, M.S., Kruschwitz, N.: Big data, analytics and the path from insights to value. MIT Sloan Manag. Rev. 52(2), 21–32 (2011)

    Google Scholar 

  12. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)

    Article  Google Scholar 

  13. Financial Services Standards. http://www.omg.org/hot-topics/finance.htm. Accessed 19 Apr 2018

  14. Belohlavek, R., Trnecka, M.: Basic level of concepts in formal concept analysis. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 28–44. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29892-9_9

    Chapter  MATH  Google Scholar 

  15. Singh, P.K., Kumar, C.A.: Concept lattice reduction using different subset of attributes as information granules. Granul. Comput. 2(3), 159–173 (2017)

    Article  Google Scholar 

  16. Belohlavek, R., Vychodil, V.: Formal concept analysis with background knowledge: attribute priorities. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 39(4), 399–409 (2009)

    Article  Google Scholar 

  17. Zhang, S., Guo, P., Zhang, J., Wang, X., Pedrycz, W.: A completeness analysis of frequent weighted concept lattices and their algebraic properties. Data Knowl. Eng. 81, 104–117 (2012)

    Article  Google Scholar 

  18. Bělohlávek, R., Sklenář, V., Zacpal, J.: Formal concept analysis with hierarchically ordered attributes. Int. J. Gen. Syst. 33(4), 383–394 (2004)

    Article  MathSciNet  Google Scholar 

  19. Domenach, F., Portides, G.: Similarity measures on concept lattices. In: Wilhelm, A.F.X., Kestler, H.A. (eds.) Analysis of Large and Complex Data. SCDAKO, pp. 159–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25226-1_14

    Chapter  Google Scholar 

  20. Choi, S.S., Cha, S.H., Tappert, C.C.: A survey of binary similarity and distance measures. J. Syst. Cybern. Inf. 8(1), 43–48 (2010)

    Google Scholar 

  21. W3C, SPARQL 1.1 Query Language. https://www.w3.org/TR/sparql11-query. Accessed 23 Apr 2018

  22. Sharpe, W.F.: Asset allocation: management style and performance measurement. J. Portfolio Manag. 18(2), 7–19 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qudamah Quboa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quboa, Q., Mehandjiev, N., Behnaz, A. (2019). Applying Ontology-Informed Lattice Reduction Using the Discrimination Power Index to Financial Domain. In: Mehandjiev, N., Saadouni, B. (eds) Enterprise Applications, Markets and Services in the Finance Industry. FinanceCom 2018. Lecture Notes in Business Information Processing, vol 345. Springer, Cham. https://doi.org/10.1007/978-3-030-19037-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19037-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19036-1

  • Online ISBN: 978-3-030-19037-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics