Skip to main content

Redox Mechanisms and Plant Tolerance Under Heavy Metal Stress: Genes and Regulatory Networks

  • Chapter
  • First Online:
Plant Metallomics and Functional Omics

Abstract

Heavy metal contamination of environment is becoming increasingly serious with rapid and unchecked industrialization and urbanization. Soil contamination with heavy metals and their associated health risks have been reported in various areas globally. Plants accumulate heavy metals from soil under contaminated environments. Inside plants, heavy metals provoke numerous biochemical alterations via different metabolic processes. These biochemical alterations in plants are primarily via redox reactions which cause activation of different enzymes, modification of cell membrane permeability, replacement of essential ions, and reaction with functional groups of different molecules. Under heavy metal stress, plants have evolved numerous defense processes to tolerate heavy metal toxicity, such as sequestration into vacuoles, activation of several antioxidants, and chelation by phytochelatin/glutathione. All the biochemical changes, in plants, are mediated by a complex regulatory network of genes. The expression or overexpression of these genes and enzymes under metal stress has been revealed in some recent studies. Moreover, the heavy metal transporter proteins and transcription factors are involved in heavy metal acquisition/tolerance/homeostasis. In this chapter, we have presented an overall relation of redox mechanism and plant tolerance under heavy metal stress. We highlight the heavy metal contamination in environment, their sources in soil, accumulation by plants, their toxic effects on plants, and detoxification processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APX:

Ascorbate peroxidase

CAT:

Catalase

CDF:

Cation diffusion facilitator

FER:

Ferritin Fe (III) binding

GPX:

Guaiacol peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

HMA:

Heavy metal ATPase

IREG:

Iron-regulated transporter family

NAS:

Nicotinamine synthase

NP-SH:

Thiol

NRAMP:

Natural resistance-associated macrophage protein

ROS:

Reactive oxygen species

SAMS:

S-adenosyl-methionine synthetase

SOD:

Superoxide dismutase

YSL:

Yellow-stripe-like transporter

ZIP:

ZRT, IRT-like protein

References

  • Abbas G, Saqib M, Akhtar J, Murtaza G (2017) Physiological and biochemical characterization of Acacia stenophylla and Acacia albida exposed to salinity under hydroponic conditions. Can J For Res 47:1293–1301

    Article  CAS  Google Scholar 

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi N, Khan M, Amjad M, Hussain M, Natasha (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Article  PubMed Central  CAS  Google Scholar 

  • Aborode FA, Raab A, Voigt M, Costa LM, Krupp EM, Feldmann J (2016) The importance of glutathione and phytochelatins on the selenite and arsenate detoxification in Arabidopsis thaliana. J Environ Sci 49:150–161

    Article  Google Scholar 

  • Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M (2015) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35(2):303–315. https://doi.org/10.1007/s00344-015-9534-5

    Article  CAS  Google Scholar 

  • Al Mahmud J, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017) Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol Environ Saf 144:216–226

    Article  PubMed  CAS  Google Scholar 

  • Al-Huqail AA, Al-Rashed SA, Ibrahim MM, El-Gaaly GA, Qureshi MI (2017) Arsenic induced eco-physiological changes in Chickpea (Cicer arietinum) and protection by gypsum, a source of sulphur and calcium. Sci Hortic 217:226–233. https://doi.org/10.1016/j.scienta.2017.02.007

    Article  CAS  Google Scholar 

  • Amari T, Ghnaya T, Abdelly C (2017) Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. S Afr J Bot 111:99–110

    Article  CAS  Google Scholar 

  • Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal M (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids—a review. Environ Exp Bot 75:307–324

    CAS  Google Scholar 

  • Anjum NA, Aref IM, Duarte AC, Pereira E, Ahmad I, Iqbal M (2014) Glutathione and proline can coordinately make plants withstand the joint attack of metal(loid) and salinity stresses. Front Plant Sci 5:662. https://doi.org/10.3389/fpls.2014.00662

    Article  PubMed  PubMed Central  Google Scholar 

  • Anjum SA, Ashraf U, Imran K, Tanveer M, Shahid M, Shakoor A, Longchang W (2017) Phyto-toxicity of chromium in maize: oxidative damage, osmolyte accumulation, anti-oxidative defense and chromium uptake. Pedosphere 27:262–273

    Article  Google Scholar 

  • Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradère P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192

    Article  CAS  PubMed  Google Scholar 

  • Arshad T, Maqbool N, Javed F, Wahid A, Arshad MU (2017) Enhancing the defensive mechanism of lead affected barley (Hordeum vulgare L.) genotypes by exogenously applied salicylic acid. J Agric Sci 9:139

    Google Scholar 

  • Ashfaque F, Inam A, Inam A, Iqbal S, Sahay S (2017) Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). S Afr J Bot 111:153–160. https://doi.org/10.1016/j.sajb.2017.03.002

    Article  CAS  Google Scholar 

  • Ashraf U, Tang X (2017) Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere 176:141–155. https://doi.org/10.1016/j.chemosphere.2017.02.103

    Article  CAS  PubMed  Google Scholar 

  • Awoyemi OM (2017) Molecular toxicology of the use of coal fly ash as soil amendment for the production of bioenergy feedstock, switchgrass (Panicum virgatum L.). Tennessee State University

    Google Scholar 

  • Axelsen KB, Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. Journal of molecular evolution 46:84–101

    Article  CAS  PubMed  Google Scholar 

  • Balakhnina T, Nadezhkina E (2017) Effect of selenium on growth and antioxidant capacity of Triticum aestivum L. during development of lead-induced oxidative stress. Russ J Plant Physiol 64:215–223

    Article  CAS  Google Scholar 

  • Belkhadi A, Hediji H, Abbes Z, Nouairi I, Barhoumi Z, Zarrouk M, Chaïbi W, Djebali W (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L. Ecotoxicol Environ Saf 73:1004–1011

    Article  CAS  PubMed  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120

    Article  CAS  Google Scholar 

  • Bozzi AT, Bane LB, Weihofen WA, Singharoy A, Guillen ER, Ploegh HL, Schulten K, Gaudet R (2016) Crystal structure and conformational change mechanism of a bacterial Nramp-family divalent metal transporter. Structure 24:2102–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton CV, Kile ML, Catalano PJ, Hoffman E, Quamruzzaman Q, Rahman M, Mahiuddin G, Christiani DC (2007) GSTM1 and APE1 genotypes affect arsenic-induced oxidative stress: a repeated measures study. Environ Health 6:39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Çanakci-Gülengül S, Yildiz T, Deveci D (2017) Some physiological and biochemical responses to copper of detached cucumber (Cucumis sativus L.) cotyledons pre-floated in salicylic acid. Pak J Bot 49:487–492

    Google Scholar 

  • Cao Y, Ma C, Chen G, Zhang J, Xing B (2017) Physiological and biochemical responses of Salix integra Thunb. under copper stress as affected by soil flooding. Environ Pollut 225:644–653

    Article  CAS  PubMed  Google Scholar 

  • Chandrakar V, Naithani SC, Keshavkant S (2016a) Arsenic-induced metabolic disturbances and their mitigation mechanisms in crop plants: a review. Biologia 71:367–377

    Article  CAS  Google Scholar 

  • Chandrakar V, Dubey A, Keshavkant S (2016b) Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. J Soil Sci Plant Nutr 16:662–676

    CAS  Google Scholar 

  • Chandrakar V, Yadu B, Meena RK, Dubey A, Keshavkant S (2017) Arsenic-induced genotoxic responses and their amelioration by diphenylene iodonium, 24-epibrassinolide and proline in Glycine max L. Plant Physiol Biochem 112:74–86

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary K, Jan S, Khan S (2015) Heavy metal ATPase (HMA2, HMA3, and HMA4) genes in hyperaccumulation mechanism of heavy metals. Plant Metal Interaction. Elsevier, pp 545–556

    Google Scholar 

  • Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162. https://doi.org/10.1105/tpc.021584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang S-C, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci 100:3525–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Chen M, Jiang M (2017) Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings. Plant Physiol Biochem 111:179–192. https://doi.org/10.1016/j.plaphy.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  • Chow YN, Lee LK, Zakaria NA, Foo KY (2018) Phytotoxic effects of trivalent chromium-enriched water irrigation in Vigna unguiculata seedling. J Clean Prod 202:101–108. https://doi.org/10.1016/j.jclepro.2018.07.144

    Article  CAS  Google Scholar 

  • Clemens S, Aarts MG, Thomine S, Verbruggen N (2013) Plant science: the key to preventing slow cadmium poisoning. Trends Plant Sci 18:92–99

    Article  CAS  PubMed  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  CAS  PubMed  Google Scholar 

  • Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant Cell Environ 31:244–257

    CAS  PubMed  Google Scholar 

  • Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Barroso JB (2017) Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O 2·-) in Arabidopsis peroxisomes, affects catalase activity. Nitric Oxide 68:103–110

    Article  CAS  PubMed  Google Scholar 

  • Corrêa Martins MN, de Souza VV, Souza TDS (2016) Genotoxic and mutagenic effects of sewage sludge on higher plants. Ecotoxicol Environ Saf 124:489–496. https://doi.org/10.1016/j.ecoenv.2015.11.031

    Article  CAS  PubMed  Google Scholar 

  • Dai M, Lu H, Liu W, Jia H, Hong H, Liu J, Yan C (2017) Phosphorus mediation of cadmium stress in two mangrove seedlings Avicennia marina and Kandelia obovata differing in cadmium accumulation. Ecotoxicol Environ Saf 139:272–279. https://doi.org/10.1016/j.ecoenv.2017.01.017

    Article  CAS  PubMed  Google Scholar 

  • DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132

    Article  CAS  PubMed  Google Scholar 

  • Das S, Sen M, Saha C, Chakraborty D, Das A, Banerjee M, Seal A (2011) Isolation and expression analysis of partial sequences of heavy metal transporters from Brassica juncea by coupling high throughput cloning with a molecular fingerprinting technique. Planta 234:139–156

    Article  CAS  PubMed  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova ZP, Feller U (2006) Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J Plant Nutr 29:451–468. https://doi.org/10.1080/01904160500524951

    Article  CAS  Google Scholar 

  • Deng Y, Li D, Huang Y, Huang S (2017a) Physiological response to cadmium stress in kenaf (Hibiscus cannabinus L.) seedlings. Indust Crops Products 107:453–457. https://doi.org/10.1016/j.indcrop.2017.06.008

    Article  CAS  Google Scholar 

  • Deng Y, Li D, Huang Y, Huang S (2017b) Physiological response to cadmium stress in kenaf (Hibiscus cannabinus L.) seedlings. Ind Crop Prod 107:453–457

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gad SC, Pham T (2014) Selenium A2—Wexler, Philip. Encyclopedia of toxicology, 3rd edn. Academic Press, Oxford, pp 232–235

    Book  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gang W, Zhen-Kuan W, Yong-Xiang W, Li-Ye C, Hong-Bo S (2007) The mutual responses of higher plants to environment: physiological and microbiological aspects. Colloids Surf B: Biointerfaces 59:113–119

    Article  PubMed  CAS  Google Scholar 

  • Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat JF, Lebrun M, Mari S (2007) TcYSL3, a member of the YSL gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49:1–15

    Article  CAS  PubMed  Google Scholar 

  • Ghiani A, Fumagalli P, Van TN, Gentili R, Citterio S (2014) The combined toxic and genotoxic effects of Cd and As to plant bioindicator Trifolium repens L. PLoS One 9:e99239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrients management: morphological, physiological and biochemical aspects. Plant Stress 5:1–23

    Google Scholar 

  • Golob A, Gadžo D, Stibilj V, Djikić M, Gavrić T, Kreft I, Germ M (2016) Sulphur interferes with selenium accumulation in Tartary buckwheat plants. Plant Physiol Biochem 108:32–36

    Article  CAS  PubMed  Google Scholar 

  • Gondor OK, Pál M, Darkó É, Janda T, Szalai G (2016) Salicylic acid and sodium salicylate alleviate cadmium toxicity to different extents in maize (Zea mays L.). PLoS One 11:e0160157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong B, Nie W, Yan Y, Gao Z, Shi Q (2017) Unravelling cadmium toxicity and nitric oxide induced tolerance in Cucumis sativus: insight into regulatory mechanisms using proteomics. J Hazard Mater 336:202–213

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol 83:306–314

    Article  CAS  PubMed  Google Scholar 

  • Gravot A, Lieutaud A, Verret F, Auroy P, Vavasseur A, Richaud P (2004) AtHMA3, a plant P1B-ATPase, functions as a Cd/Pb transporter in yeast. FEBS Lett 561:22–28

    Article  CAS  PubMed  Google Scholar 

  • Grün S, Lindermayr C, Sell S, Durner J (2006) Nitric oxide and gene regulation in plants. J Exp Bot 57:507–516

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Chen H, Hong C, Jiang D, Zheng B (2017) Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation. Ecotoxicol Environ Saf 141:119–128. https://doi.org/10.1016/j.ecoenv.2017.03.018

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466. https://doi.org/10.4161/psb.21949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He H, He L, Gu M (2014) The diversity of nitric oxide function in plant responses to metal stress. Biometals 27:219–228

    Article  CAS  PubMed  Google Scholar 

  • He H, Huang W, Oo TL, Gu M, He L-F (2017) Nitric oxide inhibits aluminum-induced programmed cell death in peanut (Arachis hypoganea L.) root tips. J Hazard Mater 333:285–292

    Article  CAS  PubMed  Google Scholar 

  • Hirata A, Corcoran GB, Hirata F (2011) Carcinogenic heavy metals, As 3+ and Cr 6+, increase affinity of nuclear mono-ubiquitinated annexin A1 for DNA containing 8-oxo-guanosine, and promote translesion DNA synthesis. Toxicol Appl Pharmacol 252:159–164

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012

    Google Scholar 

  • Hou W, Chen X, Song G, Wang Q, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    Article  CAS  PubMed  Google Scholar 

  • İşeri ÖD, Körpe DA, Yurtcu E, Sahin FI, Haberal M (2011) Copper-induced oxidative damage, antioxidant response and genotoxicity in Lycopersicum esculentum Mill. and Cucumis sativus L. Plant Cell Rep 30:1713–1721

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017) Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Sci Rep 7:42039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khairy AIH, Oh MJ, Lee SM, Roh KS (2016) Nitric oxide overcomes Cd and Cu toxicity in in vitro-grown tobacco plants through increasing contents and activities of rubisco and rubisco activase. Biochimie Open 2:41–51

    Article  PubMed  PubMed Central  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C (2016) A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor 182:247–268

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Rafiq M, Bakhat HF, Imran M, Abbas T, Bibi I, Dumat C (2017a) Arsenic behaviour in soil-plant system: biogeochemical reactions and chemical speciation influences. In: Anjum N et al (eds) Enhancing cleanup of environmental pollutants: non biological approaches, vol 2. Springer

    Google Scholar 

  • Khalid S, Shahid M, Dumat C, Niazi NK, Bibi I, Bakhat FS, Abbas G, Murtaza B, Javeed HMR (2017b) Influence of groundwater and wastewater irrigation on lead accumulation in soil and vegetables: implications for health risk assessment and phytoremediation. Int J Phytoremediation 19(11):1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-O, Bae H-J, Cho E, Kang H (2017) Exogenous glutathione enhances mercury tolerance by inhibiting mercury entry into plant cells. Front Plant Sci 8:683. https://doi.org/10.3389/fpls.2017.00683

    Article  PubMed  PubMed Central  Google Scholar 

  • Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P (2017) Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma 255(1):11–24

    Article  PubMed  CAS  Google Scholar 

  • Kotapati KV, Palaka BK, Ampasala DR (2017) Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. Crop J 5:240–250. https://doi.org/10.1016/j.cj.2016.09.002

    Article  Google Scholar 

  • Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res-Fund Mol M 570:149–161

    Article  CAS  Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1354

    Article  PubMed  PubMed Central  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  CAS  PubMed  Google Scholar 

  • Kumar D, Yusuf MA, Singh P, Sardar M, Sarin NB (2013) Modulation of antioxidant machinery in alpha-tocopherol-enriched transgenic Brassica juncea plants tolerant to abiotic stress conditions. Protoplasma 250:1079–1089. https://doi.org/10.1007/s00709-013-0484-0

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Dhingra G, Gupta S (2015) Genotoxicity due to chromium-mitotic effects in Vigna Angularis (L.) Gaertn. (Adzuki Bean). Int J Environ Rehab Conserv 2:161–168

    Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136

    Article  CAS  PubMed  Google Scholar 

  • Lasswell J, Rogg LE, Nelson DC, Rongey C, Bartel B (2000) Cloning and characterization of IAR1, a gene required for auxin conjugate sensitivity in Arabidopsis. Plant Cell 12:2395–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Keasling JD, Niyogi KK (2012) Overlapping photoprotective function of vitamin E and carotenoids in chlamydomonas. Plant Physiol 158:313–323. https://doi.org/10.1104/pp.111.181230

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ma L, Bu N, Li Y, Zhang L (2014a) Effects of salicylic acid pre-treatment on cadmium and/or UV-B stress in soybean seedlings. Biol Plant 58:195–199

    Article  CAS  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014b) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468:843–853

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Song Q, Tang Y, Li W, Xu J, Wu J, Wang F, Brookes PC (2013) Human health risk assessment of heavy metals in soil–vegetable system: a multi-medium analysis. Sci Total Environ 463:530–540

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Ding Y, Wang F, Ye Y, Zhu C (2016) Role of salicylic acid in resistance to cadmium stress in plants. Plant Cell Rep 35:719–731

    Article  CAS  PubMed  Google Scholar 

  • Lou LQ, Shi GL, Wu JH, Zhu S, Qian M, Wang HZ, Cai QS (2015) The influence of phosphorus on arsenic uptake/efflux and as toxicity to wheat roots in comparison with sulfur and silicon. J Plant Growth Regul 34:242–250

    Article  CAS  Google Scholar 

  • Maleki M, Ghorbanpour M, Kariman K (2017) Physiological and antioxidative responses of medicinal plants exposed to heavy metals stress. Plant Gene 11:247–254

    Article  CAS  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Mateo A, Funck D, Mühlenbock P, Kular B, Mullineaux PM, Karpinski S (2006) Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J Exp Bot 57:1795–1807

    Article  CAS  PubMed  Google Scholar 

  • Matysik J, Alia B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82(5):525–532

    CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M, Dietz K-J (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132:272–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Choudhuri M (1999) Effects of salicylic acid on heavy metal-induced membrane deterioration mediated by lipoxygenase in rice. Biol Plant 42:409–415

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mohammed AS, Kapri A, Goel R (2011) Heavy metal pollution: source, impact, and remedies. In: Khan MS et al (eds) Biomanagement of metal-contaminated soils. Springer, Dordrecht, Netherlands, pp 1–28

    Google Scholar 

  • Moravcová Š, Tůma J, Dučaiová ZK, Waligórski P, Kula M, Saja D, Słomka A, Bąba W, Libik-Konieczny M (2018) Influence of salicylic acid pretreatment on seeds germination and some defence mechanisms of Zea mays plants under copper stress. Plant Physiol Biochem 122:19–30. https://doi.org/10.1016/j.plaphy.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostofa MG, Fujita M (2013) Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology 22:959–973

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Hossain MA, Siddiqui MN, Fujita M, Tran L-SP (2017) Phenotypical, physiological and biochemical analyses provide insight into selenium-induced phytotoxicity in rice plants. Chemosphere 178:212–223

    Article  CAS  PubMed  Google Scholar 

  • Munne-Bosch S (2005) The role of alpha-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Namdjoyan S, Kermanian H, Soorki AA, Tabatabaei SM, Elyasi N (2017) Interactive effects of Salicylic acid and nitric oxide in alleviating zinc toxicity of Safflower (Carthamus tinctorius L.). Ecotoxicology 26(6):752–761

    Article  CAS  PubMed  Google Scholar 

  • Nanda R, Agrawal V (2016) Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl. Environ Exp Bot 125:31–41

    Article  CAS  Google Scholar 

  • Natasha SM, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934

    Article  CAS  PubMed  Google Scholar 

  • Negrin VL, Teixeira B, Godinho RM, Mendes R, Vale C (2017) Phytochelatins and monothiols in salt marsh plants and their relation with metal tolerance. Mar Pollut Bull 121:78–84. https://doi.org/10.1016/j.marpolbul.2017.05.045

    Article  CAS  PubMed  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1763:609–620

    CAS  Google Scholar 

  • Niazi NK, Bashir S, Bibi I, Murtaza B, Shahid M, Javed MT, Shakoor MB, Saqib ZA, Nawaz MF, Aslam Z (2016) Phytoremediation of arsenic-contaminated soils using arsenic hyperaccumulating ferns. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham, pp 521–545

    Chapter  Google Scholar 

  • Niazi NK, Bibi I, Shahid M, Ok YS, Shaheen SM, Rinklebe J, Wang H, Murtaza B, Islam E, Nawaz MF (2017) Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci Total Environ 621:1642–1651

    Article  PubMed  CAS  Google Scholar 

  • Niazi NK, Bibi I, Shahid M, Ok YS, Burton ED, Wang H, Shaheen SM, Rinklebe J, Lüttge A (2018) Arsenic removal by perilla leaf biochar in aqueous solutions and groundwater: an integrated spectroscopic and microscopic examination. Environ Pollut 232:31–41

    Article  CAS  PubMed  Google Scholar 

  • Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han Y, Neukermans J, MARQUEZ-GARCIA B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    Article  CAS  PubMed  Google Scholar 

  • Pan J-W, Zheng K, Ye D, Yi H-L, Jiang Z-M, Jing C-T, Pan W-H, Zhu M-Y (2004) Aluminum-induced ultraweak luminescence changes and sister-chromatid exchanges in root tip cells of barley. Plant Sci 167:1391–1399

    Article  CAS  Google Scholar 

  • Panda BB, Panda KK (2002) Genotoxicity and mutagenicity of metals in plants. In: Prasad MNV, Strzałka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Springer, Dordrecht, pp 395–414

    Chapter  Google Scholar 

  • Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69:278–288

    Article  CAS  PubMed  Google Scholar 

  • Per TS, Masood A, Khan NA (2017) Nitric oxide improves S-assimilation and GSH production to prevent inhibitory effects of cadmium stress on photosynthesis in mustard (Brassica juncea L.). Nitric Oxide 68:111–124

    Article  CAS  PubMed  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci 98:9995–10000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popova L, Maslenkova L, Yordanova R, Krantev A, Szalai G, Janda T (2008) Salicylic acid protects photosynthesis against cadmium toxicity in pea plants. Gen Appl Plant Physiol 34:133–148

    CAS  Google Scholar 

  • Potocki S, Valensin D, Kozlowski H (2014) The specificity of interaction of Zn 2+, Ni 2+ and Cu 2+ ions with the histidine-rich domain of the TjZNT1 ZIP family transporter. Dalton Trans 43:10215–10223

    Article  CAS  PubMed  Google Scholar 

  • Pourrut B, Jean S, Silvestre J, Pinelli E (2011a) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutat Res 726:123–128. https://doi.org/10.1016/j.mrgentox.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011b) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. https://doi.org/10.1007/978-1-4419-9860-6_4

    Article  CAS  PubMed  Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011c) Lead uptake, toxicity, and detoxification in plants. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 213. Springer, New York, NY, pp 113–136

    Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011d) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136. https://doi.org/10.1007/978-1-4419-9860-6_4

    Article  CAS  PubMed  Google Scholar 

  • Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. In: Gupta D, Corpas F, Palma J (eds) Heavy metal stress in plants. Springer, Berlin, Heidelberg, pp 121–147

    Chapter  Google Scholar 

  • Qadir S, Qureshi MI, Javed S, Abdin MZ (2004) Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci 167:1171–1181. https://doi.org/10.1016/j.plantsci.2004.06.018

    Article  CAS  Google Scholar 

  • Rafiq M, Shahid M, Abbas G, Shamshad S, Khalid S, Niazi NK, Dumat C (2017a) Comparative effect of calcium and EDTA on arsenic uptake and physiological attributes of Pisum sativum. Int J Phytoremediation 19(7):662–669. https://doi.org/10.1080/15226514.2016.1278426

    Article  CAS  PubMed  Google Scholar 

  • Rafiq M, Shahid M, Shamshad S, Khalid S, Niazi NK, Abbas G, Saeed MF, Ali M, Murtaza B (2017b) A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. J Soils Sediments 18(6):2271–2281. https://doi.org/10.1007/s11368-017-1693-5

    Article  CAS  Google Scholar 

  • Rafiq M, Shahid M, Shamshad S, Khalid S, Niazi NK, Abbas G, Saeed MF, Ali M, Murtaza B (2018) A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. J Soils Sediments 18:2271–2281

    Article  CAS  Google Scholar 

  • Rafique R, Zahra Z, Virk N, Shahid M, Pinelli E, Park TJ, Kallerhoff J, Arshad M (2018) Dose-dependent physiological responses of Triticum aestivum L. to soil applied TiO2 nanoparticles: alterations in chlorophyll content, H2O2 production, and genotoxicity. Agric Ecosyst Environ 255:95–101

    Article  CAS  Google Scholar 

  • Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    Article  PubMed  CAS  Google Scholar 

  • Ricachenevsky FK, Menguer PK, Sperotto RA, Williams LE, Fett JP (2013) Roles of plant metal tolerance proteins (MTP) in metal storage and potential use in biofortification strategies. Front Plant Sci 4:144

    PubMed  PubMed Central  Google Scholar 

  • Romè C, Huang X-Y, Danku J, Salt DE, Sebastiani L (2016) Expression of specific genes involved in Cd uptake, translocation, vacuolar compartmentalisation and recycling in Populus alba Villafranca clone. J Plant Physiol 202:83–91

    Article  PubMed  CAS  Google Scholar 

  • Römheld V, Schaaf G (2004) Iron transport in plants: future research in view of a plant nutritionist and a molecular biologist. Soil Sci Plant Nutr 50:1003–1012

    Article  Google Scholar 

  • Rossman TG (2000) Cloning genes whose levels of expression are altered by metals: implications for human health research. Am J Ind Med 38:335–339

    Article  CAS  PubMed  Google Scholar 

  • Ruíz-Torres C, Feriche-Linares R, Rodríguez-Ruíz M, Palma JM, Corpas FJ (2017) Arsenic-induced stress activates sulfur metabolism in different organs of garlic (Allium sativum L.) plants accompanied by a general decline of the NADPH-generating systems in roots. J Plant Physiol 211:27–35

    Article  PubMed  CAS  Google Scholar 

  • Saeed MF, Shaheen M, Ahmad I, Zakir A, Nadeem M, Chishti AA, Shahid M, Bakhsh K, Damalas CA (2017) Pesticide exposure in the local community of Vehari District in Pakistan: an assessment of knowledge and residues in human blood. Sci Total Environ 587:137–144

    Article  PubMed  CAS  Google Scholar 

  • Sahay S, Gupta M (2017) An update on nitric oxide and its benign role in plant responses under metal stress. Nitric Oxide 67:39–52. https://doi.org/10.1016/j.niox.2017.04.011

    Article  CAS  PubMed  Google Scholar 

  • Saidi I, Yousfi N, Borgi MA (2017) Salicylic acid improves the antioxidant ability against arsenic-induced oxidative stress in sunflower (Helianthus annuus) seedling. J Plant Nutr 40(16):2326–2335

    Article  CAS  Google Scholar 

  • Saleem M, Asghar HN, Zahir ZA, Shahid M (2018) Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere 195:606–614. https://doi.org/10.1016/j.chemosphere.2017.12.117

    Article  CAS  PubMed  Google Scholar 

  • Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355

    Article  PubMed  CAS  Google Scholar 

  • Saxena I, Shekhawat G (2013) Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide 32:13–20

    Article  CAS  PubMed  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore-and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    Article  CAS  PubMed  Google Scholar 

  • Shabir R, Abbas G, Saqib M, Shahid M, Shah G, Akram M, Niazi N, Naeem M, Hussain M, Ashraf F (2018) Cadmium tolerance and phytoremediation potential of acacia (Acacia nilotica L.) under salinity stress. Int J Phytoremediation 20(7):739–746. https://doi.org/10.1080/15226514.2017.1413339

    Article  CAS  PubMed  Google Scholar 

  • Shah FUR, Ahmad N, Masood KR, Peralta-Videa JR, Ahmad FD (2010) Heavy metal toxicity in plants. In: Ashraf M, Ozturk M, Ahmad M (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp 71–97. https://doi.org/10.1007/978-90-481-9370-7_4

    Chapter  Google Scholar 

  • Shahbaz AK, Iqbal M, Jabbar A, Hussain S, Ibrahim M (2018) Assessment of nickel bioavailability through chemical extractants and red clover (Trifolium pratense L.) in an amended soil: related changes in various parameters of red clover. Ecotoxicol Environ Saf 149:116–127. https://doi.org/10.1016/j.ecoenv.2017.11.022

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Dumat C, Silvestre J, Pinelli E (2012a) Effect of fulvic acids on lead-induced oxidative stress to metal sensitive Vicia faba L. plant. Biol Fertil Soils 48:689–697. https://doi.org/10.1007/s00374-012-0662-9

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Aslam M, Pinelli E (2012b) Assessment of lead speciation by organic ligands using speciation models. Chem Speciat Bioavailab 24:248–252. https://doi.org/10.3184/095422912X13495331697627

    Article  CAS  Google Scholar 

  • Shahid M, Arshad M, Kaemmerer M, Pinelli E, Probst A, Baque D, Pradere P, Dumat C (2012c) Long-term field metal extraction by Pelargonium: phytoextraction efficiency in relation to plant maturity. Int J Phytoremediation 14:493–505

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Ferrand E, Schreck E, Dumat C (2013a) Behavior and impact of zirconium in the soil–plant system: plant uptake and phytotoxicity. Rev Environ Contam Toxicol 221:107–127

    CAS  PubMed  Google Scholar 

  • Shahid M, Xiong T, Castrec-Rouelle M, Leveque T, Dumat C (2013b) Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J Environ Sci 25:2451–2459

    Article  CAS  Google Scholar 

  • Shahid M, Pinelli E, Pourrut B, Dumat C (2014a) Effect of organic ligands on lead-induced oxidative damage and enhanced antioxidant defense in the leaves of Vicia faba plants. J Geochem Explor 144:282–289

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Sabir M, Pinelli E (2014b) Assessing the effect of metal speciation on lead toxicity to Vicia faba pigment contents. J Geochem Explor 144(Part B):290–297. https://doi.org/10.1016/j.gexplo.2014.01.003

    Article  CAS  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C, Pinelli E (2014c) Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soils Sediments 14:835–843

    Article  CAS  Google Scholar 

  • Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014d) Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1–44

    CAS  PubMed  Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015a) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454. https://doi.org/10.1134/s1021443715040159

    Article  CAS  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015b) Heavy metal stress and crop productivity. In: Hakeem K (ed) Crop production and global environmental issues. Springer, Cham, pp 1–25

    Google Scholar 

  • Shahid M, Ahmad A, Khalid S, Siddique HF, Saeed MF, Ashraf MR, Sabir M, Niazi NK, Bilal M, Naqvi STA (2016) Pesticides pollution in agricultural soils of Pakistan. In: Hakeem K, Akhtar J, Sabir M (eds) Soil science: agricultural and environmental prospectives. Springer, pp 199–229

    Google Scholar 

  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PM (2017a) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol 241:73–137

    CAS  PubMed  Google Scholar 

  • Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017b) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58. https://doi.org/10.1016/j.jhazmat.2016.11.063

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Rafiq M, Niazi NK, Dumat C, Shamshad S, Khalid S, Bibi I (2017c) Arsenic accumulation and physiological attributes of spinach in the presence of amendments: an implication to reduce health risk. Environ Sci Pollut Res 24:16097–16106

    Article  CAS  Google Scholar 

  • Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017d) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2018a) Tracing trends in plant physiology and biochemistry: need of databases from genetic to kingdom level. Plant Physiol Biochem 127:630–635

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Niazi NK, Khalid S, Murtaza B, Bibi I, Rashid MI (2018b) A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Pollut 234:915–934

    Article  PubMed  CAS  Google Scholar 

  • Shahid M, Niazi NK, Dumat C, Naidu R, Khalid S, Rahman MM, Bibi I (2018c) A meta-analysis of the distribution, sources and health risks of arsenic-contaminated groundwater in Pakistan. Environ Pollut 242:307–319

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Shamshad S, Farooq ABU, Rafiq M, Khalid S, Dumat C, Zhang Y, Hussain I, Niazi NK (2018d) Comparative effect of organic amendments on physio-biochemical traits of young and old bean leaves grown under cadmium stress: a multivariate analysis. Environ Sci Pollut Res 26(12):11579–11590

    Article  CAS  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Rahman MM, Naidu R, Dong Z, Shahid M, Arshad M (2015) Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health 12:12371–12390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Murtaza G, Kunhikrishnan A, Seshadri B, Shahid M, Ali S, Bolan NS, Ok YS (2016) Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit Rev Environ Sci Technol 46:467–499

    Article  CAS  Google Scholar 

  • Shakoor MB, Bibi I, Niazi NK, Shahid M, Nawaz MF, Farooqi A, Naidu R, Rahman MM, Murtaza G, Lüttge A (2018a) The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere 199:737–746

    Article  CAS  PubMed  Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Shahid M, Sharif F, Bashir S, Shaheen SM, Wang H, Tsang DC, Ok YS (2018b) Arsenic removal by natural and chemically modified water melon rind in aqueous solutions and groundwater. Sci Total Environ 645:1444–1455

    Article  CAS  PubMed  Google Scholar 

  • Shameer K, Ambika S, Varghese SM, Karaba N, Udayakumar M, Sowdhamini R (2009) STIFDB—Arabidopsis stress responsive transcription factor database. Int J Plant Genomics 2009:583429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamshad S, Shahid M, Rafiq M, Khalid S, Dumat C, Sabir M, Murtaza B, Farooq ABU, Shah NS (2018) Effect of organic amendments on cadmium stress to pea: a multivariate comparison of germinating vs young seedlings and younger vs older leaves. Ecotoxicol Environ Saf 151:91–97

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sheng Z, Chaohai W, Chaodeng L, Haizhen W (2008) Damage to DNA of effective microorganisms by heavy metals: impact on wastewater treatment. J Environ Sci 20:1514–1518

    Article  Google Scholar 

  • Sidhu GPS, Bali AS, Singh HP, Batish DR, Kohli RK (2018) Ethylenediamine disuccinic acid enhanced phytoextraction of nickel from contaminated soils using Coronopus didymus (L.) Sm. Chemosphere 205:234–243. https://doi.org/10.1016/j.chemosphere.2018.04.106

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Silva P, Oliveira H, Gaivao I, Matos M, Pinto-Carnide O, Santos C (2017) Pb low doses induced genotoxicity in Lactuca sativa plants. Plant Physiol Biochem 112:109–116. https://doi.org/10.1016/j.plaphy.2016.12.026

    Article  CAS  PubMed  Google Scholar 

  • Silva VM, Boleta EHM, Lanza MGDB, Lavres J, Martins JT, Santos EF, dos Santos FLM, Putti FF, Junior EF, White PJ, Broadley MR, de Carvalho HWP, dos Reis AR (2018) Physiological, biochemical, and ultrastructural characterization of selenium toxicity in cowpea plants. Environ Exp Bot 150:172–182. https://doi.org/10.1016/j.envexpbot.2018.03.020

    Article  CAS  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V (2015a) Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci 6:1272

    PubMed  Google Scholar 

  • Singh M, Singh VP, Dubey G, Prasad SM (2015b) Exogenous proline application ameliorates toxic effects of arsenate in Solanum melongena L. seedlings. Ecotoxicol Environ Saf 117:164–173

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015c) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

    Article  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143

    PubMed  PubMed Central  Google Scholar 

  • Singh AP, Dixit G, Kumar A, Mishra S, Kumar N, Dixit S, Singh PK, Dwivedi S, Trivedi PK, Pandey V, Dhankher OP, Norton GJ, Chakrabarty D, Tripathi RD (2017a) A protective role for nitric oxide and salicylic acid for arsenite phytotoxicity in rice (Oryza sativa L.). Plant Physiol Biochem 115:163–173. https://doi.org/10.1016/j.plaphy.2017.02.019

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Sounderajan S, Kumar K, Fulzele D (2017b) Investigation of arsenic accumulation and biochemical response of in vitro developed Vetiveria zizanoides plants. Ecotoxicol Environ Saf 145:50–56

    Article  CAS  PubMed  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slaymaker DH, Navarre DA, Clark D, del Pozo O, Martin GB, Klessig DF (2002) The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci 99:11640–11645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ślusarczyk J, Wierzbicka M, Suchocki P, Kuraś M (2015) Ultrastructural changes in onion (Allium cepa L.) root tip meristem cells treated with Selol and sodium selenate (IV). Caryologia 68:306–316. https://doi.org/10.1080/00087114.2015.1109934

    Article  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    Article  CAS  PubMed  Google Scholar 

  • Soares C, de Sousa A, Pinto A, Azenha M, Teixeira J, Azevedo RA, Fidalgo F (2016) Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ Exp Bot 122:115–125

    Article  CAS  Google Scholar 

  • Song W-Y, Park J, Mendoza-Cózatl DG, Suter-Grotemeyer M, Shim D, Hörtensteiner S, Geisler M, Weder B, Rea PA, Rentsch D (2010) Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters. Proc Natl Acad Sci 107:21187–21192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Y, Hudek L, Freestone D, Puhui J, Michalczyk A, Senlin Z, Ackland M (2014) Comparative analyses of cadmium and zinc uptake correlated with changes in natural resistance-associated macrophage protein (NRAMP) expression in Solanum nigrum L. and Brassica rapa. Environ Chem 11:653–660

    Google Scholar 

  • Song Y, Zhang L-L, Li J, He X-J, Chen M, Deng Y (2018) High-potential accumulation and tolerance in the submerged hydrophyte Hydrilla verticillata (L.f.) Royle for nickel-contaminated water. Ecotoxicol Environ Saf 161:553–562. https://doi.org/10.1016/j.ecoenv.2018.06.032

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino MC, Capozzi F, Giordano S, Spagnuolo V (2017) Genotoxic effect of Pb and Cd on in vitro cultures of Sphagnum palustre: an evaluation by ISSR markers. Chemosphere 181:208–215. https://doi.org/10.1016/j.chemosphere.2017.04.065

    Article  CAS  PubMed  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  CAS  PubMed  Google Scholar 

  • Tabassum RA, Shahid M, Dumat C, Niazi NK, Khalid S, Shah NS, Imran M, Khalid S (2018) Health risk assessment of drinking arsenic-containing groundwater in Hasilpur, Pakistan: effect of sampling area, depth, and source. Environ Sci Pollut Res:1–12

    Google Scholar 

  • Tamás L, Mistrík I, Alemayehu A, Zelinová V, Bočová B, Huttová J (2015) Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol 173:1–8

    Article  PubMed  CAS  Google Scholar 

  • Tamás L, Mistrík I, Zelinová V (2017) Heavy metal-induced reactive oxygen species and cell death in barley root tip. Environ Exp Bot 140:34–40

    Article  CAS  Google Scholar 

  • Téllez Vargas J, Rodríguez-Monroy M, López Meyer M, Montes-Belmont R, Sepúlveda-Jiménez G (2017) Trichoderma asperellum ameliorates phytotoxic effects of copper in onion (Allium cepa L.). Environ Exp Bot 136:85–93. https://doi.org/10.1016/j.envexpbot.2017.01.009

    Article  CAS  Google Scholar 

  • Thakur S, Singh L, Zularisam A, Sakinah M, Din M (2017) Lead induced oxidative stress and alteration in the activities of antioxidative enzymes in rice shoots. Biol Plant 61:595–598

    Article  CAS  Google Scholar 

  • Tiwari S, Sarangi BK (2017) Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress. Ecol Eng 100:211–218

    Article  Google Scholar 

  • Tuteja N, Singh MB, Misra MK, Bhalla PL, Tuteja R (2001) Molecular mechanisms of DNA damage and repair: progress in plants. Crit Rev Biochem Mol Biol 36:337–397

    Article  CAS  PubMed  Google Scholar 

  • Usha B, Venkataraman G, Parida A (2009) Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopis juliflora (SW) DC show differences in binding to heavy metals in vitro. Mol Gen Genomics 281:99–108

    Article  CAS  Google Scholar 

  • Venkatachalam P, Jayalakshmi N, Geetha N, Sahi SV, Sharma NC, Rene ER, Sarkar SK, Favas PJ (2017) Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere 171:544–553

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Verkleij JA, Golan-Goldhirsh A, Antosiewisz DM, Schwitzguébel J-P, Schröder P (2009) Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 67:10–22

    Article  CAS  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    Article  CAS  PubMed  Google Scholar 

  • Verret F, Gravot A, Auroy P, Preveral S, Forestier C, Vavasseur A, Richaud P (2005) Heavy metal transport by AtHMA4 involves the N-terminal degenerated metal binding domain and the C-terminal His11 stretch. FEBS Lett 579:1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Wang L-H, Meng X-Y, Guo B, Duan G-L (2007) Reduction of arsenic oxidative toxicity by phosphate is not related to arsenate reductase activity in wheat plants. J Plant Nutr 30:2105–2117. https://doi.org/10.1080/01904160701700582

    Article  CAS  Google Scholar 

  • Wang L, Yang L, Yang F, Li X, Song Y, Wang X, Hu X (2010) Involvements of H 2 O 2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. J Plant Physiol 167:1298–1306

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li Q, Wu W, Guo J, Yang Y (2017) Cadmium stress tolerance in wheat seedlings induced by ascorbic acid was mediated by NO signaling pathways. Ecotoxicol Environ Saf 135:75–81. https://doi.org/10.1016/j.ecoenv.2016.09.013

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhi J, Liu X, Zhang H, Liu H, Xu J (2018) Transgenic tobacco plants expressing a P1B-ATPase gene from Populus tomentosa Carr.(PtoHMA5) demonstrate improved cadmium transport. Int J Biol Macromol 113:655–661

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Pittman JK, Hall J (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta Biomembr 1465:104–126

    Article  CAS  Google Scholar 

  • Wu Z, Liu S, Zhao J, Wang F, Du Y, Zou S, Li H, Wen D, Huang Y (2017) Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ Exp Bot 133:1–11

    Article  CAS  Google Scholar 

  • Xiong T, Austruy A, Pierart A, Shahid M, Schreck E, Mombo S, Dumat C (2016) Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J Environ Sci 46:16–27

    Article  Google Scholar 

  • Xiong T, Zhang T, Dumat C, Sobanska S, Dappe V, Shahid M, Xian Y, Li X, Li S (2018) Airborne foliar transfer of particular metals in Lactuca sativa L.: translocation, phytotoxicity, and bioaccessibility. Environ Sci Pollut Res:1–15. https://doi.org/10.1007/s11356-018-3084-x

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Yu W, Ma Q, Zhou H, Jiang C (2017) Toxicity of sulfadiazine and copper and their interaction to wheat (Triticum aestivum L.) seedlings. Ecotoxicol Environ Saf 142:250–256

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Wang LC, Chang CY, Liu TY (1999) Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ Mol Mutagen 33:194–201

    Article  CAS  PubMed  Google Scholar 

  • Yi H, Si L (2007) Vicia root-micronucleus and sister chromatid exchange assays on the genotoxicity of selenium compounds. Mutat Res Genet Toxicol Environ Mutagen 630:92–96

    Article  CAS  Google Scholar 

  • Yousefi Z, Kolahi M, Majd A, Jonoubi P (2018) Effect of cadmium on morphometric traits, antioxidant enzyme activity and phytochelatin synthase gene expression (SoPCS) of Saccharum officinarum var. cp48-103 in vitro. Ecotoxicol Environ Saf 157:472–481. https://doi.org/10.1016/j.ecoenv.2018.03.076

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Chen N, Chi X, Pan L, Chen M, Wang T, Wang C, Yang Z, Wang M (2015) Transcription factors and salt stress tolerance in plants. In: Managing salt tolerance in plants: molecular and genomic perspectives. CRC Press, p 143

    Google Scholar 

  • Zhang X, Yu HJ, Zhang XM, Yang XY, Zhao WC, Li Q, Jiang WJ (2016) Effect of nitrogen deficiency on ascorbic acid biosynthesis and recycling pathway in cucumber seedlings. Plant Physiol Biochem 108:222–230

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yu J, Hong H, Liu J, Lu H, Yan C (2017a) Identification of heavy metal pollutant tolerance-associated genes in Avicennia marina (Forsk.) by suppression subtractive hybridization. Mar Pollut Bull 119:81–91

    Article  CAS  PubMed  Google Scholar 

  • Zhang LL, Zhu XM, Kuang YW (2017b) Responses of Pinus massoniana seedlings to lead stress. Biol Plant 61(4):785–790. https://doi.org/10.1007/s10535-017-0710-2

    Article  CAS  Google Scholar 

  • Zhang T, Lu Q, Su C, Yang Y, Hu D, Xu Q (2017c) Mercury induced oxidative stress, DNA damage, and activation of antioxidative system and Hsp70 induction in duckweed (Lemna minor). Ecotoxicol Environ Saf 143:46–56

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ding Y, Zhi J, Li X, Liu H, Xu J (2018) Over-expression of the poplar expansin gene PtoEXPA12 in tobacco plants enhanced cadmium accumulation. Int J Biol Macromol 116:676–682

    Article  CAS  PubMed  Google Scholar 

  • Zhiguo E, Tingting L, Chen C, Lei W (2018) Genome-wide survey and expression analysis of P 1B-ATPases in rice, maize and sorghum. Rice Sci 25:208–217

    Article  Google Scholar 

  • Zhou X, Gu Z, Xu H, Chen L, Tao G, Yu Y, Li K (2016) The effects of exogenous ascorbic acid on the mechanism of physiological and biochemical responses to nitrate uptake in two rice cultivars (Oryza sativa L.) under aluminum stress. J Plant Growth Regul 35:1013–1024. https://doi.org/10.1007/s00344-016-9599-9

    Article  CAS  Google Scholar 

  • Zhu Z, Chen Y, Shi G, Zhang X (2017) Selenium delays tomato fruit ripening by inhibiting ethylene biosynthesis and enhancing the antioxidant defense system. Food Chem 219:179–184

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Meng X, Cai J, Li G, Dong T, Li Z (2018) Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol 18:83. https://doi.org/10.1186/s12870-018-1299-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo Y, Qiu S, Amombo E, Zhu Q, Tang D, Huang M, Han X, Chen L, Wang S, Chen K (2017) Nitric oxide alleviates cadmium toxicity in tall fescue photosystem II on the electron donor side. Environ Exp Bot 137:110–118

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shahid, M. et al. (2019). Redox Mechanisms and Plant Tolerance Under Heavy Metal Stress: Genes and Regulatory Networks. In: Sablok, G. (eds) Plant Metallomics and Functional Omics. Springer, Cham. https://doi.org/10.1007/978-3-030-19103-0_5

Download citation

Publish with us

Policies and ethics