Skip to main content

Imaging Oral Biofilm and Plaque

  • Chapter
  • First Online:
Oral Diagnosis
  • 606 Accesses

Abstract

Oral biofilm is a primary determinant of oral health, yet our ability to detect, map, and characterize it in vivo remains extremely limited. Moreover, there exists an as yet unmet but pressing need for characterizing its properties and response to prevention and intervention measures. Because clinical mapping of oral biofilm has been primarily restricted to macroscopic plaque staining techniques combined with naked eye visualization, additional means of assessing and quantifying oral biofilm in situ at high levels of resolution are currently under development. This chapter addresses emerging optical imaging modalities for evaluating in vivo oral biofilm noninvasively. Desirable attributes include: informing on variables that translate into clinical decision-making guidance to improve diagnosis, better treatment planning and outcomes, ease and speed of use, appropriate cost for the indicated setting, patient-friendly probes, and reliability. In this chapter, the principles behind optical approaches to imaging and characterizing oral biofilm, as well as their feasibility and applicability for imaging in situ are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whittaker C, Ridgway H, Olson BH. Evaluation of cleaning strategies for removal of biofilms from reverse-osmosis membranes. Appl Environ Microbiol. 1984;48(2):395–403.

    PubMed  PubMed Central  Google Scholar 

  2. Chandki R, Banthia P, Banthia R. Biofilms: a microbial home. J Indian Soc Periodontol. 2011;15(2):111–4. https://doi.org/10.4103/0972-124X.84377.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hannig M, Fiebiger M, Güntzer M, Döbert A, Zimehl R, Nekrasheych Y. Protective effect of the in situ formed short-term salivary pellicle. Arch Oral Biol. 2004;49:903–10.

    Article  PubMed  Google Scholar 

  4. Nieuw Amerongen AV, Oderkerk CH, Driessen AA. Role of mucins from human whole saliva in the protection of tooth enamel against demineralization in vitro. Caries Res. 1987;21:297–309.

    Article  PubMed  Google Scholar 

  5. Hannig C, Wasser M, Becker K, Hannig M, Huber K, Attin T. Influence of different restorative materials on lysozyme and amylase activity of the salivary pellicle in situ. J Biomed Mater Res Part A. 2006;78A:755–61.

    Article  Google Scholar 

  6. Zahradnik RT, Moreno EC, Burke EJ. Effect of salivary pellicle on enamel subsurface demineralization in vitro. J Dent Res. 1976;55:664–70.

    Article  PubMed  Google Scholar 

  7. Hannig M, Hess NJ, Hoth-Hannig W, de Vrese M. Influence of salivary pellicle formation time on enamel demineralization-an in situ pilot study. Clin Oral Investig. 2003;7:158–61.

    Article  PubMed  Google Scholar 

  8. Roberts AP, Mullany P. Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Expert Rev Anti Infect Ther. 2010;8(12):1441–50.

    Article  PubMed  Google Scholar 

  9. Ahimou F, Semmens MJ, Novak PJ, Haugstad G. Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Appl Environ Microbiol. 2007;73(9):2897–904.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schilling KM, Bowe WH. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for streptococcus mutans. Infect Immun. 1992;60:284–95.

    PubMed  PubMed Central  Google Scholar 

  11. Gong K, Mailloux L, Herzberg MC. Salivary film express a complex, macromolecular binding site for streptococcus sanguis. J Biol Chem. 2000;275:8970–4.

    Article  PubMed  Google Scholar 

  12. Dobell C. Antony Van Leewenhoek and his ‘little animals’. The first observations on entozoic protozoa and bacteria. New York: Russell and Russell, Inc.; 1958. p. 236–56.

    Google Scholar 

  13. Karygianni L, Follo M, Hellwig E, Burghardt D, Wolkewitz M, Anderson A, et al. Microscope-based imaging platform for large-scale analysis of oral biofilms. Appl Environ Microbiol. 2012;78(24):8703–11.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zaura-Arite E, van Marle J, ten Cate JM. Conforcal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res. 2016;80(5):1436–40.

    Article  Google Scholar 

  15. Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res. 2016;79(1):21–7.

    Article  Google Scholar 

  16. Dige I, Nilsson H, Kilian M, Nyvad B. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur J Oral Sci. 2007;115(6):459–67.

    Article  PubMed  Google Scholar 

  17. Netuschil L, Reich E, Unteregger G, Schulean A, Brecx M. A pilot study of confocal laser scanning microcopy for the assessment of undisturbed dental plaque vitality and topography. Arch Oral Biol. 1998;43(4):277–85.

    Article  PubMed  Google Scholar 

  18. Sandison D, Webb W. Background rejection and signal-to-noise optimization in the confocal and alternative fluorescence microscopes. Appl Opt. 1994;33:603–10.

    Article  PubMed  Google Scholar 

  19. Gratton E, van de Ven MJ. Laser sources for confocal microscopy. In: Pawley JB, editor. Handbook of biological confocal microscopy. New York: Plenum Press; 1995. p. 69–98.

    Chapter  Google Scholar 

  20. Ashkin A, Dziedzic JM, Yamane T. Optical trapping and manipulation of single cells using infrared laser beams. Nature. 1987;330:769–71.

    Article  PubMed  Google Scholar 

  21. Claxton NS, Fellers TJ, Davidson MW. Laser scanning confocal microscopy. Tallahassee: Department of Optical Microscopy and Digital Imaging, Florida State University; 2006. http://www.olympusconfocal.com/theory/LSCMIntro.pdf.

    Google Scholar 

  22. Klug B, Rodler C, Koller M, Wimmer G, Kessler H, Grube M, et al. Oral biofilm analysis of palatal expanders by fluorescence in-situ hybridization and confocal laser scanning microscopy. J Vis Exp. 2011;56:2967.

    Google Scholar 

  23. Gabriela PM. Confocal scanning laser microscopy in the study of biofilm formation in tissues of the upper airway in otolaryngologic disease. Miscosc Sci Technol Appl Educ. 2010;3:590–6.

    Google Scholar 

  24. Nakano A. Spinning disk confocal microscopy—a cutting-edge tool for imaging of membrane traffic. Cell Struct Funct. 2002;27(5):349–55.

    Article  PubMed  Google Scholar 

  25. Tomas I, Henderson B, Biz P, Donos N. In vivo oral biofilm analysis by conforcal laser scanning microscopy: methodological approaches. Miscosco Sci Technol Appl Educ. 2010;3:597–606.

    Google Scholar 

  26. Baek JH, Krasieva T, Tang S, Ahn Y, Kim C, Vu D, Chen Z, Wilder-Smith P. Optical approach to the salivary pellicle. J Biomed Opt. 2009;14(4):044001.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res. 2000;79:21–7.

    Article  PubMed  Google Scholar 

  28. Wecke J, Kersten T, Madela K, Moter A, Göbel UB, Friedmann A, Bernimoulin J. A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets. FEMS Microbiol Lett. 2000;191:95–101.

    Article  PubMed  Google Scholar 

  29. Auschill TM, Hellwig E, Sculean A, Hein N, Arweiller NB. Impact of the intraoral location on the rate of biofilm growth. Clin Oral Investig. 2004;8:97–101.

    Article  PubMed  Google Scholar 

  30. Watson PS, Pontefract HA, Devine DA, Shore RC, Nattres BR, Kirkham J, Robinson C. Penetration of fluoride into natural plaque biofilms. J Dent Res. 2005;84:451–5.

    Article  PubMed  Google Scholar 

  31. Neu TR, Kuhlicke U, Lawrence JR. Assessment of fluorochromes for two-photon laser scanning microscopy of biofilms. Appl Environ Microbiol. 2002;68(2):901–9.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 248:73–6.

    Article  PubMed  Google Scholar 

  33. Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21:1369–77.

    Article  PubMed  Google Scholar 

  34. Maeda K, Tribble GD, Tucker CM, Anaya C, Shizukuishi S, Lewis JP, Demuth DR, Lamont RJ. A porphyromonas gingivalis tyrosine phosphatase is a multifunctional regulator of virulence attributes. Mol Microbiol. 2008;69(5):1153–64.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tung OH, Lee SY, Lai YL, Chen HF. Characteristics of subgingival calculus detection by multiphoton fluorescence microscopy. J Biomed Opt. 2011;16(6):066017.

    Article  PubMed  Google Scholar 

  36. König K. Multiphoton microscopy in life sciences. J Microsc. 2000;200(2):83–104.

    Article  PubMed  Google Scholar 

  37. Bode J, Kruwel T, Tews B. Light sheet fluorescence microscopy combined with optical clearing methods as a novel imaging tool in biomedical research. Eur Med J. 2017;1:67–74.

    Google Scholar 

  38. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986;56:930–3.

    Article  PubMed  Google Scholar 

  39. Dickinson ME, Mann AB. Nanomechanics and morphology of salivary pellicle. J Mater Res. 2006;21(8):1996–2002.

    Article  Google Scholar 

  40. Howland R, Benatar L, Park scientific instruments. A practical guide to scanning probe microscopy. Park scientific instruments; 1996.

    Google Scholar 

  41. Germano F, Bramanti E, Arcuri C, Cecchetti F, Cicciu M. Atomic force microcopy of bacteria from periodontal subgingival biofilm: preliminary study results. Eur J Dent. 2013;7(2):152–8.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sharma S, Lavender S, Guo L, Gimzewski JK. Nasoscale characterization of effect of L-arginine on S. mutans biofilm adhesion by atomic force microscopy. Microbiology. 2014;160:1466–73.

    Article  PubMed  Google Scholar 

  43. Dickinson ME, Mann AB. Nanoscale characterisation of salivary pellicle. MRS Proc. 844. https://doi.org/10.1557/PROC-844-Y2.3/R2.3.

  44. Meller K, Theiss C. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilized and embedded cells. Ultramicroscopy. 2005;106:320–5.

    Article  PubMed  Google Scholar 

  45. Kumar S, Hoh JH. Probing the machinery of intracelluer trafficking with the atomic force microscope. Traffic. 2001;2(11):746–56.

    Article  PubMed  Google Scholar 

  46. Siedentopf H. Visualization and size measurement of ultramicroscopic particles, with special application to gold-colored ruby glass. Ann Phys. 1903;10:1–39.

    Google Scholar 

  47. Santi PA. Light sheet fluorescence microscopy. J Histochem Cytochem. 2011;59(2):129–38.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cavalcanti IM, Ricomini FAP, Lucena-Ferreira SC, da Silva WJ, Paes Leme AF, Senna PM, Del Bel Cury AA. Salivary pellicle composition and multispecies biofilm developed on titanium nitrided by cold plasma. Arch Oral Biol. 2014;59(7):695–7.

    Article  PubMed  Google Scholar 

  49. Kolenbrander PE, Anderson RN, Palmar RJ Jr, et al. Communication among oral bacteria. Microbiol Mol Biol Rev. 2002;66(3):486–505.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vokes DE, Jackson R, Guo S, Perez A, Su J, Ridgway M, Armstrong WB, Chen Z, Wong BJ. Optical coherence tomography-enhanced microlaryngoscopy: preliminary report of a noncontact optical coherence tomography system integrated with a surgical microscope. Ann Otol Rhinol Laryngol. 2008;117(7):538–47.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chelliyil RG, Ralston TS, Marks DL, Boppart SA. High speed processing architecture for spectral-domain optical coherence microscopy. J Biomed Opt. 2008;13(4):44013.

    Article  Google Scholar 

  52. Sumen C, Mempel TR, Mazo IB, von Andrian UH. Intravital microscopy: visualizing immunity in context. Immunity. 2004;21(3):315–29.

    PubMed  Google Scholar 

  53. Huang R, Li M, Gregory RL. Bacterial interactions in dental biofilm. Virulence. 2011;2:435–44.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Corbin A, Pitts B, Parker A, Stewart PS. Antimicrobial penetration and efficancy in an in vitro oral biofilm model. Antimicrob Agents Chemother. 2011;55(7):3338–44.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Baker PJ, Pintar AL, Lin-Gibson S, Lin NJ, Lopez-Perez D. Evaluating the activity of an anti-biofilm agent via imaging. BioImaging Informatics Conference. 2015.

    Google Scholar 

  56. March PD. Dental plaque as a microbial biofilm. Caries Res. 2004;38(3):204–11.

    Article  Google Scholar 

  57. Ajdaharian J, Dadkhah M, Sabokpey S, Biren-Fetz J, Chung NE, Wink C, Wilder-Smith P. Multimodality imaging of the effects of a novel dentifrice on oral biofilm. Lasers Surg Med. 2014;46(7):546–52.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Quintas V, Prada-López I, Prados-Frutos JC, Tomás I. In situ antimicrobial activity on oral biofilm: essential oils vs. 0.2% chlorhexidine. Clin Oral Investig. 2015;19(1):97–107.

    Article  PubMed  Google Scholar 

  59. McNamara PM, Dsouza R, O’Riordan C, Collins S, O’Brien P, Wilson C, Hogan J, Leahy MJ. Development of a first-generation miniature multiple reference optical coherence tomography imaging device. J Biomed Opt. 2016;21(12):126020.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ajdaharian, J., Baek, J.H. (2020). Imaging Oral Biofilm and Plaque. In: Wilder-Smith, P., Ajdaharian, J. (eds) Oral Diagnosis. Springer, Cham. https://doi.org/10.1007/978-3-030-19250-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19250-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19249-5

  • Online ISBN: 978-3-030-19250-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics