Skip to main content

Periodogram Connectivity of EEG Signals for the Detection of Dyslexia

  • Conference paper
  • First Online:
Understanding the Brain Function and Emotions (IWINAC 2019)

Abstract

Electroencephalography (EEG) signals provide an important source of information of brain activity at different areas. This information can be used to diagnose brain disorders according to different activation patterns found in controls and patients. This acquisition technology can be also used to explore the neural basis of less evident learning disabilities such as Developmental Dyslexia (DD). DD is a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling, whose prevalent is estimated between 5% and 12% of the population. In this paper we propose a method to extract discriminative features from EEG signals based on the relationship among the spectral density at each channel. This relationship is computed by means of different correlation measures, inferring connectivity-like markers that are eventually selected and classified by a linear support vector machine. The experiments performed shown AUC values up to 0.7, demonstrating the applicability of the proposed approach for objective DD diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. (2017). https://doi.org/10.1016/j.compbiomed.2017.09.017

  2. Di Liberto, G., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., Lalor, E.: Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. NeuroImage 175, 70–79 (2018)

    Article  Google Scholar 

  3. Flanagan, S., Goswami, U.: The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks. J. Acoust. Soc. Am. 143, 1366–1375 (2018). https://doi.org/10.1121/1.5026239

    Article  Google Scholar 

  4. De la Hoz, E., de la Hoz, E., Ortiz, A., Ortega, J., Martínez-Álvarez, A.: Feature selection by multi-objective optimisation: application to network anomaly detection by hierarchical self-organising maps. Knowl.-Based Syst. 71, 322–338 (2014)

    Article  Google Scholar 

  5. Illán, I., et al.: 18F-FDG PET imaging analysis for computer aided Alzheimer’s diagnosis. Inf. Sci. 181(4), 903–916 (2011)

    Article  Google Scholar 

  6. Lafuente, V., Gorriz, J.M., Ramirez, J., Gonzalez, E.: P300 brainwave extraction from EEG signals: an unsupervised approach. Expert Syst. Appl. 74, 1–10 (2017). https://doi.org/10.1016/j.eswa.2016.12.038

    Article  Google Scholar 

  7. Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88(2), 365–411 (2004). https://doi.org/10.1016/s0047-259x(03)00096-4

    Article  MathSciNet  MATH  Google Scholar 

  8. Markiewicz, P., Matthews, J., Declerck, J., Herholz, K.: Robustness of multivariate image analysis assessed by resampling techniques and applied to FDG-PET scans of patients with Alzheimer’s disease. Neuroimage 46, 472–485 (2009). http://www.sciencedirect.com/science/article/B6WNP-4VFK7X3-3/2/e7833cb1d62f98e28326352e45981d00

    Article  Google Scholar 

  9. Martínez-Murcia, F., Górriz, J., Ramírez, J., Puntonet, C., Salas-González, D.: Computer aided diagnosis tool for Alzheimer’s disease based on Mann-Whitney-Wilcoxon U-test. Expert Syst. Appl. 39(10), 9676–9685 (2012). https://doi.org/10.1016/j.eswa.2012.02.153

    Article  Google Scholar 

  10. Ortiz, A., Munilla, J., Martínez-Murcia, F.J., Górriz, J.M., Ramírez, J.: Learning longitudinal MRI patterns by SICE and deep learning: assessing the Alzheimer’s disease progression. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 413–424. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_36

    Chapter  Google Scholar 

  11. Peterson, R., Pennington, B.: Developmental dyslexia. Lancet 379, 1997–2007 (2012)

    Article  Google Scholar 

  12. Sakkalis, V.: Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41(12), 1110–1117 (2011). https://doi.org/10.1016/j.compbiomed.2011.06.020

    Article  Google Scholar 

  13. Schoffelen, J.M., Gross, J.: Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30(6), 1857–1865 (2009). https://doi.org/10.1002/hbm.20745

    Article  Google Scholar 

  14. Stoeckel, J., Ayache, N., Malandain, G., Koulibaly, P.M., Ebmeier, K.P., Darcourt, J.: Automatic classification of SPECT images of Alzheimer’s disease patients and control subjects. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 654–662. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30136-3_80

    Chapter  Google Scholar 

  15. Thompson, P.A., Hulme, C., Nash, H.M., Gooch, D., Hayiou-Thomas, E., Snowling, M.J.: Developmental dyslexia: predicting individual risk. J. Child Psychol. Psychiatry 56(9), 976–987 (2015)

    Article  Google Scholar 

  16. Welch, P.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967). https://doi.org/10.1109/tau.1967.1161901

    Article  Google Scholar 

  17. Zhou, S.M., Gan, J.Q., Sepulveda, F.: Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface. Inf. Sci. 178(6), 1629–1640 (2008). https://doi.org/10.1016/j.ins.2007.11.012

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the MINECO/ FEDER under TEC2015-64718-R and PSI2015-65848-R projects and the Juan de la Cierva - Formación postdoctoral programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. J. Martinez-Murcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martinez-Murcia, F.J. et al. (2019). Periodogram Connectivity of EEG Signals for the Detection of Dyslexia. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19591-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19590-8

  • Online ISBN: 978-3-030-19591-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics