Skip to main content

WIMS: Innovative Pedagogy with 21 Year Old Interactive Exercise Software

  • Chapter
  • First Online:
Technology in Mathematics Teaching

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 13))

Abstract

WIMS (Web Interactive Multipurpose Server) is a collaborative, open source e-learning platform hosting online, interactive, random, self-correcting exercises in many different fields such as mathematics, chemistry, physics, biology, French, and English, among others. It is widely used in France, mainly in mathematics at secondary school level and up to the first years of study at university. Using it effectively can bring advantages to both students and teachers. This chapter is devoted to the presentation of WIMS and its affordances, both from the point of view of learner and teacher. Two surveys conducted with learners and teachers using WIMS showed that this technology has an interesting pedagogical potential and can be used both in and out of class. Perspectives in terms of ongoing developments toward the improvement of the system are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Interactive map showing where WIMS is used. http://downloadcenter.wimsedu.info/download/map/map2.html.

  2. 2.

    Enquête auprès des utilisateurs WIMS [WIMS user survey]. http://moin.irem.univ-mrs.fr/groupe-wims/Enquete [consulted 2017/11/14].

  3. 3.

    http://wimsedu.info.

  4. 4.

    Université Paris-Est Marne-la-Vallée, one of the universities in Paris (France).

  5. 5.

    The project called IDEA was funded by the French Research National Agency (ANR) in the context of “Initiative of excellence in innovative training” (Initiative d’Excellence en Formations Innovantes, IDEFI) and of the Future Investments Programme (Programme Investissements d’Avenir, PIA).

  6. 6.

    https://moin.irem.univ-mrs.fr/groupe-pion/Enquete.

  7. 7.

    Platform first aimed at testing code for the learning of a first programming language. The first language project, launched by Dominique Revuz, aims to provide an easy-to-use self-correction exercise platform, https://github.com/plgitlogin/premierlangage/. The structure of this platform, written in Python and Django and interoperable, fully meets the current standards of software development and free software. It is based on a vision similar to that of WIMS: the teaching continues to be done in class, with pupils and teacher remaining the main actors. The platform allows for individual training with immediate feedback to the student and the teacher. This platform must therefore be able to respond to all tasks already answered by WIMS, in a better way.

  8. 8.

    A proof of concept (POC) is, in software engineering, the first step in the software implementation process. In the case of software development for teaching, it gives the teacher access to the entire system environment, documentation, and architecture. POC makes it possible to test the software in the real conditions of use, to clarify the needs in terms of development and the expectations in terms of configuration.

References

  • Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., & Norman, M. K. (2010). How learning works: 7 Research-based principles for smart teaching. Jossey-Bass.

    Google Scholar 

  • Berland, C. (2017) E-learning platform WIMS for bachelor first year courses on electric circuit. Presented at the European Association for Education in Electrical and Information Engineering (EAEEIE) Annual Conference, June 2017, Grenoble (France).

    Google Scholar 

  • Bloom, B. S. (1956). Taxonomy of educational objectives, handbook 1: The cognitive domain. New York: David McKay.

    Google Scholar 

  • Brophy, J. (2004). Motivating students to learn (2nd ed.). New Jersey: Lawrence Erlbaum Associates Publishers.

    Book  Google Scholar 

  • Cazes, C., Gueudet, G., Hersant, M., & Vandebrouck, F. (2006). Using e-exercise bases in mathematics: Case studies at university. International Journal of Computers for Mathematical Learning,11, 327–350.

    Article  Google Scholar 

  • Chappaz, G. (1992). Peut-on éduquer la motivation? Cahiers pédagogiques, 300.

    Google Scholar 

  • Chevallard, Y. (1998). Analyse des pratiques enseignantes et didactique des mathématiques: l’approche anthropologique. In Actes de l’université d’été Analyse des pratiques enseignantes et didactique des mathématiques (pp. 91–120). IREM de Clermont-Ferrand.

    Google Scholar 

  • Cordier, F., & Cordier, J. (1991). L’application du théorème de Thalès. Un exemple du rôle des représentations typiques comme biais cognitifs. Recherche en Didactique des Mathématiques, 11(1), 45–64.

    Google Scholar 

  • Cosnefroy, L. (2011). L’apprentissage autorégulé: Entre cognition et motivation. Grenoble: Presses universitaires de Grenoble.

    Google Scholar 

  • Duval, R. (1993). Registres de représentations sémiotiques et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives,5, 37–65.

    Google Scholar 

  • Getha-Taylor, H., Hummert, R., Nalbandian, J., & Silvia, C. (2013). Competency model design and assessment: Findings and future directions. Journal of Public Affairs Education,19(1), 141–171.

    Article  Google Scholar 

  • Giner, E., & Kobylanski, M. (2017). Retour sur l’expérimentation WIMS. Research Report. UPEM.

    Google Scholar 

  • Grubb, W. N., & Cox, R. D. (2005). Pedagogical alignment and curricular consistency: The challenges for developmental education. New Directions for Community Colleges,129, 93–103.

    Article  Google Scholar 

  • Hersant, M., & Vandebrouck, F. (2006). Bases d’exercices de mathématiques en ligne et phénomènes d’enseignement-apprentissage. Repères-IREM,62, 71–84.

    Google Scholar 

  • Jacquemin, L. (2017). WIMS: une ressource comme les autres mais en mieux. Enquête sociologique auprès d’utilisateurs enseignants de WIMS sur leurs usages et pratiques effectives. Research Report. UPEM.

    Google Scholar 

  • Jacquemin, L. (2018). Enquête sociologique auprès des étudiants utilisateurs de WIMS à Marne-la-Vallée. Research Report. UPEM.

    Google Scholar 

  • Karpicke, J. D. (2017). Retrieval-based learning: A decade of progress. In J. H. Byrne (ed.), Learning and Memory: A comprehensive reference (2nd Ed., pp. 487–514). Elsevier Ltd.

    Google Scholar 

  • Léon, A. (1972). La motivation chez les élèves de l’enseignement technique. Psychologie scolaire,9, 78.

    Google Scholar 

  • Pilet, J. (2012). Parcours d’enseignement différencié appuyés sur un diagnostic en algèbre élémentaire à la fin de la scolarité obligatoire: Modélisation, implémentation dans une plateforme en ligne et évaluation. Thèse de doctorat, Université Paris-Diderot, Paris 7.

    Google Scholar 

  • Ruthven, K., & Hennessy, S. (2002). A practitioner model of the use of computer-based tools and resources to support mathematics teaching and learning. Educational Studies in Mathematics,49(2–3), 47–86.

    Article  Google Scholar 

  • Ryan, R. W., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology,25, 54–67.

    Article  Google Scholar 

  • Viau, R. (2009). La motivation en contexte scolaire. Paris: De Boeck.

    Google Scholar 

  • Viau, R. (2011). La motivation condition essentielle de réussite (Edition révisée). In J. C. Ruano-Borbalan (Ed.), Éduquer et Former (pp. 113–121). Paris: Éditions Sciences Humaines.

    Google Scholar 

Download references

Acknowledgements

This chapter would never have been written without the kind and skilled support of Jana Trgalová et Gilles Aldon. The author expresses to them her warmest thanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Kobylanski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kobylanski, M. (2019). WIMS: Innovative Pedagogy with 21 Year Old Interactive Exercise Software. In: Aldon, G., Trgalová, J. (eds) Technology in Mathematics Teaching. Mathematics Education in the Digital Era, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-19741-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19741-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19740-7

  • Online ISBN: 978-3-030-19741-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics