Skip to main content

Nanotoxicology: Developing a Responsible Technology

  • Chapter
  • First Online:
Women in Nanotechnology

Part of the book series: Women in Engineering and Science ((WES))

Abstract

In 2003, Sayes’ advisor (Vicki Colvin, Rice University) published a perspective piece in Nature Biotechnology (Colvin 2003). Colvin noted that there was a mounting public discussion surrounding the environmental and social costs of nanotechnology versus its many benefits. At the time, there was speculation that engineered nanomaterials were being incorporated into commercial and industrial products (Maynard et al. 2006). In fact, by 2006, more than 300 products on the market claimed to be nano-enabled (Maynard et al. 2006). According to WikiBooks (https://en.wikibooks.org/wiki/Nanotechnology/Glossary), the term “nano-enabled is used to refer to devices or systems that utilize some aspect of nanotechnology to enhance their function. Products that act solely on the macroscale but have some enhancement due to nanotechnology are sold as being nano-enabled.” The debate that ensued in the early 2000s resulted in a request for more information about the toxicological and environmental effects of direct and indirect exposure to nanomaterials (Foss Hansen et al. 2008; Maynard et al. 2006). Scientists, regulators, and consumers alike were concerned about the lack of clear guidelines to quantify the potential adverse health effects induced by engineered nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adegboyega, N., Sharma, V., Cizmas, L., & Sayes, C. (2016). UV light induces Ag nanoparticle formation: Roles of natural organic matter, iron, and oxygen. Environmental Chemistry Letters, 14, 353–357.

    Article  Google Scholar 

  • Alkilany, A., Lohse, S., & Murphy, C. (2013). The gold standard: Gold nanoparticle libraries to understand the nano-bio interface. Accounts of Chemical Research, 46, 650–661.

    Article  Google Scholar 

  • Bartlett, J. A., Brewster, M., Brown, P., Cabral-Lilly, D., Cruz, C. N., David, R., Eickhoff, W. M., Haubenreisser, S., Jacobs, A., Malinoski, F., Morefield, E., Nalubola, R., Prud’homme, R. K., Sadrieh, N., Sayes, C. M., Shahbazian, H., Subbarao, N., Tamarkin, L., Tyner, K., Uppoor, R., Whittaker-Caulk, M., & Zamboni, W. (2015). Summary report of PQRI workshop on nanomaterial in drug products: Current experience and management of potential risks. The AAPS Journal, 17, 44–64.

    Article  Google Scholar 

  • Berg, J., Romoser, A., Banerjee, N., Zebda, R., & Sayes, C. (2009). The relationship between pH and zeta potential of similar to 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology, 3, 276–283.

    Article  Google Scholar 

  • Berg, J., Ho, S., Hwang, W., Zebda, R., Cummins, K., Soriaga, M., Taylor, R., Guo, B., & Sayes, C. (2010). Internalization of carbon black and maghemite iron oxide nanoparticle mixtures leads to oxidant production. Chemical Research in Toxicology, 23, 1874–1882.

    Article  Google Scholar 

  • Berg, J. M., Romoser, A. A., Figueroa, D. E., West, C. S., & Sayes, C. M. (2013). Comparative cytological responses of lung epithelial and pleural mesothelial cells following in vitro exposure to nanoscale SiO2. Toxicology In Vitro, 27, 24–33.

    Article  Google Scholar 

  • Borm, P. J., Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Stone, V., Kreyling, W., Lademann, J., Krutmann, J., Warheit, D., & Oberdorster, E. (2006). The potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre Toxicology, 3, 11.

    Article  Google Scholar 

  • Casals, E., Pfaller, T., Duschl, A., Oostingh, G. J., & Puntes, V. (2010). Time evolution of the nanoparticle protein corona. ACS Nano, 4, 3623–3632.

    Article  Google Scholar 

  • Christensen, F. M., Johnston, H. J., Stone, V., Aitken, R. J., Hankin, S., Peters, S., & Aschberger, K. (2011). Nano-TiO2—Feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology, 5, 110–124.

    Article  Google Scholar 

  • Colvin, V. L. (2003). The potential environmental impact of engineered nanomaterials. Nature Biotechnology, 21, 1166–1170.

    Article  Google Scholar 

  • Derfus, A., Chan, W., & Bhatia, S. (2004). Probing the cytotoxicity of semiconductor quantum dots. Nano Letters, 4, 11–18.

    Article  Google Scholar 

  • Foss Hansen, S., Maynard, A., Baun, A., & Tickner, J. A. (2008). Late lessons from early warnings for nanotechnology. Nature Nanotechnology, 3, 444–447.

    Article  Google Scholar 

  • Guo, B., Zebda, R., Drake, S. J., & Sayes, C. M. (2009). Synergistic effect of co-exposure to carbon black and Fe2O3 nanoparticles on oxidative stress in cultured lung epithelial cells. Particle and Fibre Toxicology, 6, 4.

    Article  Google Scholar 

  • Hardman, R. (2006). A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives, 114, 165–172.

    Article  Google Scholar 

  • Huynh, N. T., Roger, E., Lautram, N., Benoît, J.-P., & Passirani, C. (2010). The rise and rise of stealth nanocarriers for cancer therapy: Passive versus active targeting. Nanomedicine, 5, 1415–1433.

    Article  Google Scholar 

  • Kim, S. C., Chen, D.-R., Qi, C., Gelein, R. M., Finkelstein, J. N., Elder, A., Bentley, K., Oberdörster, G., & Pui, D. Y. (2010). A nanoparticle dispersion method for in vitro and in vivo nanotoxicity study. Nanotoxicology, 4, 42–51.

    Article  Google Scholar 

  • Lesniak, A., Fenaroli, F., Monopoli, M. P., Åberg, C., Dawson, K. A., & Salvati, A. (2012). Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano, 6, 5845–5857.

    Article  Google Scholar 

  • Levard, C., Hotze, E., Lowry, G., & Brown, G. (2012). Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environmental Science & Technology, 46, 6900–6914.

    Article  Google Scholar 

  • Lujan, H., & Sayes, C. (2017). Cytotoxicological pathways induced after nanoparticle exposure: Studies of oxidative stress at the ‘nano-bio’ interface. Toxicology Research, 6, 580–594.

    Article  Google Scholar 

  • Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., & Dawson, K. A. (2008). Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences, 105(38), 14265–14270.

    Article  Google Scholar 

  • Maynard, A. D., Aitken, R. J., Butz, T., Colvin, V., Donaldson, K., Oberdörster, G., Philbert, M. A., Ryan, J., Seaton, A., Stone, V., Tinkle, S. S., Tran, L., Walker, N. J., & Warheit, D. B. (2006). Safe handling of nanotechnology. Nature, 444, 267–269.

    Article  Google Scholar 

  • Mout, R., Moyano, D. F., Rana, S., & Rotello, V. M. (2012). Surface functionalization of nanoparticles for nanomedicine. Chemical Society Reviews, 41, 2539–2544.

    Article  Google Scholar 

  • Nel, A., Madler, L., Velegol, D., Xia, T., Hoek, E., Somasundaran, P., Klaessig, F., Castranova, V., & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nature Materials, 8, 543–557.

    Article  Google Scholar 

  • Oberdörster, G., Maynard, A., Donaldson, K., Castranova, V., Fitzpatrick, J., Ausman, K., Carter, J., Karn, B., Kreyling, W., & Lai, D. (2005a). Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Particle and Fibre Toxicology, 2, 8.

    Article  Google Scholar 

  • Oberdörster, G., Oberdörster, E., & Oberdörster, J. (2005b). Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives, 113, 823.

    Article  MATH  Google Scholar 

  • Powers, C. M., Bale, A. S., Kraft, A. D., Makris, S. L., Trecki, J., Cowden, J., Hotchkiss, A., & Gillespie, P. A. (2013). Developmental neurotoxicity of engineered nanomaterials: Identifying research needs to support human health risk assessment. Toxicological Sciences, 134, 225–242.

    Article  Google Scholar 

  • Ramachandran, G., Wolf, S. M., Paradise, J., Kuzma, J., Hall, R., Kokkoli, E., & Fatehi, L. (2011). Recommendations for oversight of nanobiotechnology: Dynamic oversight for complex and convergent technology. Journal of Nanoparticle Research, 13, 1345–1371.

    Article  Google Scholar 

  • Robichaud, C. O., Uyar, A. E., Darby, M. R., Zucker, L. G., & Wiesner, M. R. (2009). Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environmental Science & Technology, 43, 4227–4233.

    Article  Google Scholar 

  • Romoser, A., Chen, P., Berg, J., Seabury, C., Ivanov, I., Criscitiello, M., & Sayes, C. (2011). Quantum dots trigger immunomodulation of the NF kappa B pathway in human skin cells. Molecular Immunology, 48, 1349–1359.

    Article  Google Scholar 

  • Romoser, A., Figueroa, D., Sooresh, A., Scribner, K., Chen, P., Porter, W., Criscitiello, M., & Sayes, C. (2012). Distinct immunomodulatory effects of a panel of nanomaterials in human dermal fibroblasts. Toxicology Letters, 210, 293–301.

    Article  Google Scholar 

  • Sayes, C. (2014). The relationships among structure, activity, and toxicity of engineered nanoparticles. Kona Powder and Particle Journal, 31, 10–21.

    Article  Google Scholar 

  • Sayes, C. M., & Lujan, H. (2017). Characterizing the nano-bio interface using microscopic techniques: Imaging the cell system is just as important as imaging the nanoparticle system. Current Protocols in Chemical Biology, 9, 213–231.

    Article  Google Scholar 

  • Sayes, C. M., & Warheit, D. B. (2009). Characterization of nanomaterials for toxicity assessment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1, 660–670.

    Google Scholar 

  • Sayes, C., Fortner, J., Guo, W., Lyon, D., Boyd, A., Ausman, K., Tao, Y., Sitharaman, B., Wilson, L., Hughes, J., West, J., & Colvin, V. (2004). The differential cytotoxicity of water-soluble fullerenes. Nano Letters, 4, 1881–1887.

    Article  Google Scholar 

  • Sayes, C., Liang, F., Hudson, J., Mendez, J., Guo, W., Beach, J., Moore, V., Doyle, C., West, J., Billups, W., Ausman, K., & Colvin, V. (2006). Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicology Letters, 161, 135–142.

    Article  Google Scholar 

  • Sayes, C. M., Marchione, A. A., Reed, K. L., & Warheit, D. B. (2007a). Comparative pulmonary toxicity assessments of C60 water suspensions in rats: Few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Letters, 7, 2399–2406.

    Article  Google Scholar 

  • Sayes, C. M., Reed, K. L., & Warheit, D. B. (2007b). Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicological Sciences, 97, 163–180.

    Article  Google Scholar 

  • Sharma, V., Siskova, K., Zboril, R., & Gardea-Torresdey, J. (2014). Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Advances in Colloid and Interface Science, 204, 15–34.

    Article  Google Scholar 

  • Sharma, V., Yang, X., Cizmas, L., McDonald, T., Luque, R., Sayes, C., Yuan, B., & Dionysiou, D. (2017). Impact of metal ions, metal oxides, and nanoparticles on the formation of disinfection by-products during chlorination. Chemical Engineering Journal, 317, 777–792.

    Article  Google Scholar 

  • Shenoy, D., Fu, W., Li, J., Crasto, C., Jones, G., Dimarzio, C., Sridhar, S., & Amiji, M. (2006). Surface functionalization of gold nanoparticles using hetero-bifunctional poly (ethylene glycol) spacer for intracellular tracking and delivery. International Journal of Nanomedicine, 1, 51.

    Article  Google Scholar 

  • Slowing, I., Trewyn, B. G., & Lin, V. S.-Y. (2006). Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. Journal of the American Chemical Society, 128, 14792–14793.

    Article  Google Scholar 

  • Sperling, R. A., & Parak, W. (2010). Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368, 1333–1383.

    Article  Google Scholar 

  • Storm, G., Belliot, S. O., Daemen, T., & Lasic, D. D. (1995). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, 17, 31–48.

    Article  Google Scholar 

  • Topuz, E., & Van Gestel, C. A. (2015). Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium. Environmental Toxicology and Chemistry, 34, 2816–2823.

    Article  Google Scholar 

  • Tsai, S., Hofmann, M., Hallock, M., Ada, E., Kong, J., & Ellenbecker, M. (2009). Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Environmental Science & Technology, 43, 6017–6023.

    Article  Google Scholar 

  • Tsai, C., Huang, C., Chen, S., Ho, C., Huang, C., Chen, C., Chang, C., Tsai, S., & Ellenbecker, M. (2011). Exposure assessment of nano-sized and respirable particles at different workplaces. Journal of Nanoparticle Research, 13, 4161–4172.

    Article  Google Scholar 

  • Villanueva, A., Canete, M., Roca, A. G., Calero, M., Veintemillas-Verdaguer, S., Serna, C. J., Del Puerto Morales, M., & Miranda, R. (2009). The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology, 20, 115103.

    Article  Google Scholar 

  • Warheit, D. B. (2008). How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicological Sciences, 101, 183–185.

    Article  Google Scholar 

  • Warheit, D. B., Hoke, R. A., Finlay, C., Donner, E. M., Reed, K. L., & Sayes, C. M. (2007). Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicology Letters, 171, 99–110.

    Article  Google Scholar 

  • Warheit, D. B., Reed, K. L., & Sayes, C. M. (2009a). A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management. Inhalation Toxicology, 21(Suppl 1), 61–67.

    Article  Google Scholar 

  • Warheit, D. B., Sayes, C. M., & Reed, K. L. (2009b). Nanoscale and fine zinc oxide particles: Can in vitro assays accurately forecast lung hazards following inhalation exposures? Environmental Science & Technology, 43, 7939–7945.

    Article  Google Scholar 

  • Wijnhoven, S., Peijnenburg, W., Herberts, C., Hagens, W., Oomen, A., Heugens, E., Roszek, B., Bisschops, J., Gosens, I., Van De Meent, D., Dekkers, S., De Jong, W., Van Zijverden, M., Sips, A., & Geertsma, R. (2009). Nano-silver—A review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 3, 109–U78.

    Article  Google Scholar 

  • Zeidan, E., Kepley, C., Sayes, C., & Sandros, M. (2015). Surface plasmon resonance: A label-free tool for cellular analysis. Nanomedicine, 10, 1833–1846.

    Article  Google Scholar 

  • Zhang, F., Durham, P., Sayes, C. M., Lau, B. L., & Bruce, E. D. (2015). Particle uptake efficiency is significantly affected by type of capping agent and cell line. Journal of Applied Toxicology, 35, 1114–1121.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christie M. Sayes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sayes, C.M. (2020). Nanotoxicology: Developing a Responsible Technology. In: Norris, P., Friedersdorf, L. (eds) Women in Nanotechnology. Women in Engineering and Science. Springer, Cham. https://doi.org/10.1007/978-3-030-19951-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19951-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19950-0

  • Online ISBN: 978-3-030-19951-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics