Skip to main content

A Dynamic Opportunistic Maintenance Model to Maximize Energy-Based Availability While Reducing the Life Cycle Cost of Wind Farms

  • Chapter
  • First Online:
Value Based and Intelligent Asset Management

Abstract

Operations and maintenance costs of the wind power generation systems can be reduced through the implementation of opportunistic maintenance policies at suitable indenture and maintenance levels. These maintenance policies take advantage of the economic dependence among the wind turbines and their systems, performing preventive maintenance tasks in running systems when some other maintenance tasks have to be undertaken in the wind farm. The existing opportunistic maintenance models for the wind energy sector follow a static decision making process, regardless of the operational and environmental context. At the same time, on some occasions policies do not refer to practical indenture and maintenance levels. In this chapter, a maintenance policy based on variable reliability thresholds is presented. This dynamic nature of the reliability thresholds, which vary according to the weather conditions, provides flexibility to the decision making process. Within the presented model, multi-level maintenance, capacity constraints and multiple failure modes per system have been considered. A comparative study, based on real operation, maintenance and weather data, demonstrates that the dynamic opportunistic maintenance policy significantly outperforms traditional corrective and static opportunistic maintenance strategies, both in terms of the overall wind farm energy production and the Life Cycle Cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann, T. (2005). Wind power in power systems. Wiley-Blackwell. https://doi.org/10.1002/0470012684.

    Google Scholar 

  2. Anon. (2015). Global status of wind power in 2014, Global wind energy council. http://www.gwec.net/wp-content/uploads/2015/03/GWEC_Global_Wind_2014_Report_LR.

  3. Tavner, P. J., Xiang, J., & Spinato, F. (2007). Reliability analysis for wind turbines. Wind Energy, 10(1), 1–18. https://doi.org/10.1002/we.204.

    Article  Google Scholar 

  4. Shafiee, M. (2015). Maintenance logistics organization for offshore wind energy: Current progress and future perspectives. Renewable Energy, 77, 182–193. https://doi.org/10.1016/j.renene.2014.11.045.

    Article  Google Scholar 

  5. Kaldellis, J., & Kapsali, M. (2013). Shifting towards offshore wind energy—Recent activity and future development. Energy Policy, 53, 136–148. https://doi.org/10.1016/j.enpol.2012.10.032.

    Article  Google Scholar 

  6. Anon. (2015). The European offshore wind industry—Key trends and statistics 2014, The European Wind Energy Association, EWEA. http://www.ewea.org/fileadmin/files/library/publications/statistics/EWEA-European-Offshore-Statistics-2014.pdf.

  7. Byon, E. (2013). Wind turbine operations and maintenance: A tractable approximation of dynamic decision making. IIE Transactions, 45(11), 1188–1201. https://doi.org/10.1080/0740817x.2012.726819.

    Article  Google Scholar 

  8. Krokoszinski, H. (2003). Efficiency and effectiveness of wind farms-keys to cost optimized operation and maintenance. Renewable Energy, 28(14), 2165–2178. https://doi.org/10.1016/s0960-1481(03)00100-9.

    Article  Google Scholar 

  9. Sen, Z. (1997). Statistical investigation of wind energy reliability and its application. Renewable Energy, 10(1), 71–79. https://doi.org/10.1016/0960-1481(96)00021-3.

    Article  MathSciNet  Google Scholar 

  10. Carlos, S., Sánchez, A., Martorell, S., & Marton, I. (2013). Onshore wind farms maintenance optimization using a stochastic model. Mathematical and Computer Modelling, 57(7–8), 1884–1890. https://doi.org/10.1016/j.mcm.2011.12.025.

    Article  Google Scholar 

  11. Ding, F., & Tian, Z. (2012). Opportunistic maintenance for wind farms considering multi-level imperfect maintenance thresholds. Renewable Energy, 45, 175–182. https://doi.org/10.1016/j.renene.2012.02.030.

    Article  Google Scholar 

  12. Márquez, F. P. G., Tobias, A. M., Pérez, J. M. P., & Papaelias, M. (2012). Condition monitoring of wind turbines: Techniques and methods. Renewable Energy, 46, 169–178. https://doi.org/10.1016/j.renene.2012.03.003.

    Article  Google Scholar 

  13. Yang, W., Tavner, P. J., Crabtree, C. J., Feng, Y., & Qiu, Y. (2014). Wind turbine condition monitoring: Technical and commercial challenges. Wind Energy, 17(5), 673–693. https://doi.org/10.1002/we.1508.

    Article  Google Scholar 

  14. Garcia, M. C., Sanz-Bobi, M. A., & del Pico, J. (2006). Simap: Intelligent system for predictive maintenance. Computers in Industry, 57(6), 552–568. https://doi.org/10.1016/j.compind.2006.02.011.

    Article  Google Scholar 

  15. Horenbeek, A. V., Ostaeyen, J. V., Duflou, J. R., & Pintelon, L. (2013). Quantifying the added value of an imperfectly performing condition monitoring system-application to a wind turbine gearbox. Reliability Engineering & System Safety, 111, 45–57. https://doi.org/10.1016/j.ress.2012.10.010.

    Article  Google Scholar 

  16. Anon. (2005). Managing the wind. Refocus, 6, 48–51. https://doi.org/10.1016/s1471-0846(05)70402-9.

    Article  Google Scholar 

  17. Amirat, Y., Benbouzid, M., Al-Ahmar, E., Bensaker, B., & Turri, S. (2009). A brief status on condition monitoring and fault diagnosis in wind energy conversion systems. Renewable and Sustainable Energy Reviews, 13(9), 2629–2636. https://doi.org/10.1016/j.rser.2009.06.031.

    Article  Google Scholar 

  18. Kusiak, A., Zhang, Z., & Verma, A. (2013). Prediction, operations, and condition monitoring in wind energy. Energy, 60, 1–12. https://doi.org/10.1016/j.energy.2013.07.051.

    Article  Google Scholar 

  19. Wang, H., & Pham, H. (2006). Optimal preparedness maintenance of multi-unit systems with imperfect maintenance and economic dependence. In Springer series in reliability engineering (pp. 135–150), Springer. https://doi.org/10.1007/1-84628-325-6_7.

  20. Ding, F., & Tian, Z. (2011). Opportunistic maintenance optimization for wind turbine systems considering imperfect maintenance actions. International Journal of Reliability, Quality and Safety Engineering, 18(05), 463–481. https://doi.org/10.1142/s0218539311004196.

    Article  Google Scholar 

  21. Nicolai, R., & Dekker, R. (2007). A review of multi-component maintenance models. In Proceedings of European Safety and Reliability Conference (pp. 289–296). http://www.dimat.unina2.it/marrone/dwnld/Proceedings/ESREL/2007/Pdf/CH036.pdf.

  22. Dekker, R., Wildeman, R. E., & van der Duyn Schouten, F. A. (1997). A review of multi-component maintenance models with economic dependence. Mathematical Methods of Operations Research, 45(3), 411–435. https://doi.org/10.1007/bf01194788.

    Article  MathSciNet  MATH  Google Scholar 

  23. Sasieni, M. W. (1956). A markov chain process in industrial replacement. OR, 7(4), 148. https://doi.org/10.2307/3007561.

    Article  Google Scholar 

  24. Nakagawa, T., & Murthy, D. (1993). Optimal replacement policies for a two-unit system with failure interactions. Revue française d’automatique, d’informatique et de recherche opérationnelle. Recherche opérationnelle, 27(4), 427–438. http://archive.numdam.org/ARCHIVE/RO/RO_1993__27_4/RO_1993__27_4_427_0/RO_1993__27_4_427_0.pdf.

  25. Wang, H. (2002). A survey of maintenance policies of deteriorating systems. European Journal of Operational Research, 139(3), 469–489. https://doi.org/10.1016/s0377-2217(01)00197-7.

    Article  MATH  Google Scholar 

  26. Ritchken, P., & Wilson, J. G. (1990). (m, t) group maintenance policies. Management Science, 36(5), 632–639. https://doi.org/10.1287/mnsc.36.5.632.

    Article  MathSciNet  MATH  Google Scholar 

  27. Vergin, R. C., & Scriabin, M. (1977). Maintenance scheduling for multicomponent equipment. IIE Transactions, 9(3), 297–305. https://doi.org/10.1080/05695557708975158.

    Article  Google Scholar 

  28. Crocker, J., & Kumar, U. (2000). Age-related maintenance versus reliability centred maintenance: A case study on aero-engines. Reliability Engineering & System Safety, 67(2), 113–118. https://doi.org/10.1016/s0951-8320(99)00052-6.

    Article  Google Scholar 

  29. Dagpunar, J. S. (1996). A maintenance model with opportunities and interrupt replacement options. The Journal of the Operational Research Society, 47(11), 1406. https://doi.org/10.2307/3010206.

    Article  MATH  Google Scholar 

  30. Zheng, X., & Fard, N. (1991). A maintenance policy for repairable systems based on opportunistic failure-rate tolerance. IEEE Transactions on Reliability, 40(2), 237–244. https://doi.org/10.1109/24.87134.

    Article  MATH  Google Scholar 

  31. Tian, Z., Jin, T., Wu, B., & Ding, F. (2011). Condition based maintenance optimization for wind power generation systems under continuous monitoring. Renewable Energy, 36(5), 1502–1509. https://doi.org/10.1016/j.renene.2010.10.028.

    Article  Google Scholar 

  32. Besnard, F., Patrikssont, M., Strombergt, A.-B., Wojciechowskit, A., & Bertling, L. (2009). An optimization framework for opportunistic maintenance of offshore wind power system. In IEEE Bucharest PowerTech, IEEE Institute of Electrical & Electronics Engineers. https://doi.org/10.1109/ptc.2009.5281868.

  33. Abdollahzadeh, H., Atashgar, K., & Abbasi, M. (2016). Multi-objective opportunistic maintenance optimization of a wind farm considering limited number of maintenance groups. Renewable Energy, 88, 247–261. https://doi.org/10.1016/j.renene.2015.11.022.

    Article  Google Scholar 

  34. Atashgar, K., & Abdollahzadeh, H. (2016). Reliability optimization of wind farms considering redundancy and opportunistic maintenance strategy. Energy Conversion and Management, 112, 445–458. https://doi.org/10.1016/j.enconman.2016.01.027.

    Article  Google Scholar 

  35. Sarker, B. R., & Faiz, T. I. (2016). Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy. Renewable Energy, 85, 104–113. https://doi.org/10.1016/j.renene.2015.06.030.

    Article  Google Scholar 

  36. Zhu, W., Fouladirad, M., & Bérenguer, C. (2016). A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes. Reliability Engineering & System Safety, 153, 50–63. https://doi.org/10.1016/j.ress.2016.03.020.

    Article  Google Scholar 

  37. Iqbal, M., Azam, M., Naeem, M., Khwaja, A., & Anpalagan, A. (2014). Optimization classification, algorithms and tools for renewable energy: A review. Renewable and Sustainable Energy Reviews, 39, 640–654. https://doi.org/10.1016/j.rser.2014.07.120.

    Article  Google Scholar 

  38. Pham, H., & Wang, H. (1996). Imperfect maintenance. European Journal of Operational Research, 94(3), 425–438. https://doi.org/10.1016/s0377-2217(96)00099-9.

    Article  MATH  Google Scholar 

  39. Byon, E., Ntaimo, L., & Ding, Y. (2010). Optimal maintenance strategies for wind turbine systems under stochastic weather conditions. IEEE Transactions on Reliability, 59(2), 393–404. https://doi.org/10.1109/tr.2010.2046804.

    Article  Google Scholar 

  40. Tavner, P., Greenwood, D. M., Whittle, M. W. G., Gindele, R., Faulstich, S., & Hahn, B. (2012). Study of weather and location effects on wind turbine failure rates. Wind Energy, 16(2), 175–187. https://doi.org/10.1002/we.538.

    Article  Google Scholar 

  41. Wilson, G., & McMillan, D. (2014). Modeling the relationship between wind turbine failure modes and the environment. Gas (CCGT), 22, 6–4. https://pure.strath.ac.uk/portal/files/30166175/Modeling_the_relationship_between_wind_turbine_failure_modes_and_the_environment.pdf.

  42. Kahrobaee, S., & Asgarpoor, S. (2013). A hybrid analytical-simulation approach for maintenance optimization of deteriorating equipment: Case study of wind turbines. Electric Power Systems Research, 104, 80–86. https://doi.org/10.1016/j.epsr.2013.06.012.

    Article  Google Scholar 

  43. Andrawus, J., Watson, J., Kishk, M., & Adam, A. (2006). The selection of a suitable maintenance strategy for wind turbines. Wind Engineering, 30(6), 471–486. https://doi.org/10.1260/030952406779994141.

    Article  Google Scholar 

  44. Byon, E., & Ding, Y. (2010). Season-dependent condition-based maintenance for a wind turbine using a partially observed Markov decision process. IEEE Transactions on Power Systems, 25(4), 1823–1834. https://doi.org/10.1109/tpwrs.2010.2043269.

    Article  Google Scholar 

  45. Carroll, J., McDonald, A., & McMillan, D. (2015). Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines. Wind Energy. https://doi.org/10.1002/we.1887.

    Article  Google Scholar 

  46. Yañez, M., Joglar, F., & Modarres, M. (2002). Generalized renewal process for analysis of repairable systems with limited failure experience. Reliability Engineering & System Safety, 77(2), 167–180. https://doi.org/10.1016/s0951-8320(02)00044-3.

    Article  Google Scholar 

  47. Karyotakis, A. (2011). On the optimisation of operation and maintenance strategies for offshore wind farms. Ph.D. thesis, University College London (UCL). http://discovery.ucl.ac.uk/id/eprint/1302066.

  48. González, J. S., Rodriguez, A. G. G., Mora, J. C., Santos, J. R., & Payan, M. B. (2010). Optimization of wind farm turbines layout using an evolutive algorithm. Renewable Energy, 35(8), 1671–1681. https://doi.org/10.1016/j.renene.2010.01.010.

    Article  Google Scholar 

  49. Karki, R., & Patel, J. (2008). Reliability assessment of a wind power delivery system. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 223(1), 51–58. https://doi.org/10.1243/1748006xjrr218.

    Article  Google Scholar 

  50. Niazi, M., & Hussain, A. (2011). Agent-based computing from multi-agent systems to agent-based models: A visual survey. Scientometrics, 89(2), 479–499. https://doi.org/10.1007/s11192-011-0468-9.

    Article  Google Scholar 

  51. Banks, J. (2003). Discrete event simulation. In Encyclopedia of information systems (pp. 663–671). Elsevier BV. https://doi.org/10.1016/b0-12-227240-4/00045-9.

    Chapter  Google Scholar 

  52. Martin-Tretton, M., Reha, M., Drunsic, M., & Keim, M. (2012). Data collection for current us wind energy projects: Component costs, financing, operations, and maintenance. Contract, 303, 275–3000.

    Google Scholar 

  53. Laguna, M., & Martí, R. (2003). The optquest callable library. In Optimization software class libraries (pp. 193–218). Springer. https://doi.org/10.1007/0-306-48126-x_7.

  54. Glover, F., Kelly, J. P., & Laguna, M., The optquest approach to crystal ball simulation optimization. Graduate school of Business, University of Colorado 16. https://www.researchgate.net/profile/Fred_Glover/publication/267771945_THE_OPTQUEST_APPROACH_TO_CRYSTAL_BALL_SIMULATION_OPTIMIZATION/links/545d0a330cf295b5615e665f.pdf.

  55. Yun, I., & Park, B. (2006). Application of stochastic optimization method for an urban corridor. In Proceedings of the 2006 Winter Simulation Conference, Institute of Electrical & Electronics Engineers (IEEE). https://doi.org/10.1109/wsc.2006.322918.

  56. Glover, F. (1998). A template for scatter search and path relinking. Lecture Notes in Computer Science, 1363, 13–54. https://doi.org/10.1007/bfb0026589.

    Article  Google Scholar 

  57. Laguna, M., & Martí, R. (2005). Experimental testing of advanced scatter search designs for global optimization of multimodal functions. Journal of Global Optimization, 33(2), 235–255. https://doi.org/10.1007/s10898-004-1936-z.

    Article  MathSciNet  MATH  Google Scholar 

  58. Rodríguez, P. C., & Simón, N. J. (2014). Wind Turbines: Safety measures in maintenance activities. Instituto Nacional de Seguridad e Higiene en el Trabajo.

    Google Scholar 

Download references

Acknowledgements

This research work was performed within both the context of the EmaitekPlus 2015–2016 Program of the Basque Government and the SustainOwner (‘Sustainable Design and Management of Industrial Assets through Total Value and Cost of Ownership’), a project sponsored by the EU Framework Programme Horizon 2020, MSCA-RISE-2014: Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) (grant agreement number 645733—Sustain-Owner—H2020-MSCA-RISE-2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Crespo Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erguido Ruiz, A., Crespo Márquez, A., Castellano, E., Gómez Fernández, J.F. (2020). A Dynamic Opportunistic Maintenance Model to Maximize Energy-Based Availability While Reducing the Life Cycle Cost of Wind Farms. In: Crespo Márquez, A., Macchi, M., Parlikad, A. (eds) Value Based and Intelligent Asset Management. Springer, Cham. https://doi.org/10.1007/978-3-030-20704-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20704-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20703-8

  • Online ISBN: 978-3-030-20704-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics