Skip to main content

Effect of Image View for Mammogram Mass Classification – An Extreme Learning Based Approach

  • Conference paper
  • First Online:
Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications (CompIMAGE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10986))

  • 240 Accesses

Abstract

Mammogram images are broadly categorized into two types: carniocaudal (CC) view and mediolateral oblique (MLO) view. In this paper, we study the effect of different image views for mammogram mass classification. For the experiments, we consider a dataset of 328 CC view images and 334 MLO view images (almost equal ratio) from a publicly available film mammogram image dataset [3]. First, features are extracted using a novel radon-wavelet based image descriptor. Then an extreme learning machine (ELM) based classification technique is applied and the performance of five different ELM kernels are compared: sigmoidal, sine, triangular basis, hard limiter and radial basis function. Performances are reported in terms of three important statistical measures namely, sensitivity or true positive rate (TPR), specificity or false negative rate (SPC) and recognition accuracy (ACC). Our experimental outcome for the present setup is two-fold: (i) CC view performs better then MLO for mammogram mass classification, (ii) hard limiter is the best ELM kernel for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.ntu.edu.sg/home/egbhuang/. Accessed 01 Mar 2017

  2. Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Convolutional neural networks for mammography mass lesion classification. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 797–800. IEEE (2015)

    Google Scholar 

  3. Arevalo, J., González, F.A., Ramos-Pollán, R., Oliveira, J.L., Lopez, M.A.G.: Representation learning for mammography mass lesion classification with convolutional neural networks. Comput. Methods Programs Biomed. 127, 248–257 (2016)

    Article  Google Scholar 

  4. Belkasim, S.O., Shridhar, M., Ahmadi, M.: Pattern recognition with moment invariants: a comparative study and new results. Pattern Recognit. 24(12), 1117–1138 (1991)

    Article  Google Scholar 

  5. Constantinidis, A., Fairhurst, M.C., Rahman, A.F.R.: A new multi-expert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms. Pattern Recognit. 34(8), 1527–1537 (2001)

    Article  Google Scholar 

  6. Deans, S.: Applications of the Radon Transform, p. 2. Wiley, New York (1983)

    Google Scholar 

  7. Dhawan, A.P., Chitre, Y., Kaiser-Bonasso, C.: Analysis of mammographic microcalcifications using gray-level image structure features. IEEE Trans. Med. Imaging 15(3), 246–259 (1996)

    Article  Google Scholar 

  8. Dua, S., Singh, H., Thompson, H.W.: Associative classification of mammograms using weighted rules. Expert. Syst. Appl. 36(5), 9250–9259 (2009)

    Article  Google Scholar 

  9. Eltoukhy, M.M., Faye, I., Samir, B.B.: A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput. Biol. Med. 40(4), 384–391 (2010)

    Article  Google Scholar 

  10. Ferreira, C.B.R., Borges, D.L.: Analysis of mammogram classification using a wavelet transform decomposition. Pattern Recognit. Lett. 24(7), 973–982 (2003)

    Article  Google Scholar 

  11. Haralick, R.M., Shanmugam, K., et al.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  12. Huang, G.B.: An insight into extreme learning machines: random neurons, random features and kernels. Cogn. Comput. 6(3), 376–390 (2014)

    Article  Google Scholar 

  13. Huang, G.B., Bai, Z., Kasun, L.L.C., Vong, C.M.: Local receptive fields based extreme learning machine. IEEE Comput. Intell. Mag. 10(2), 18–29 (2015)

    Article  Google Scholar 

  14. Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 42(2), 513–529 (2012)

    Article  Google Scholar 

  15. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

    Article  Google Scholar 

  16. Mazo, C., Alegre, E., Trujillo, M., González-Castro, V.: Tissues classification of the cardiovascular system using texture descriptors. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 123–132. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_11

    Chapter  Google Scholar 

  17. Moura, D.C., López, M.A.G.: An evaluation of image descriptors combined with clinical data for breast cancer diagnosis. Int. J. Comput. Assist. Radiol. Surg. 8(4), 561–574 (2013)

    Article  Google Scholar 

  18. Obaidullah, S.M., Ahmed, S., Goncalves, T., Rato, L.: RMID: a novel and efficient image descriptor for mammogram mass classification. In: 3rd Conference on Information Technology, Systems Research and Computational Physics (2018, accepted)

    Google Scholar 

  19. Obaidullah, S.M., Bose, A., Mukherjee, H., Santosh, K., Das, N., Roy, K.: Extreme learning machine for handwritten indic script identification in multiscript documents. J. Electron. Imaging 27(5), 051214 (2018)

    Article  Google Scholar 

  20. http://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/. Accessed 01 Mar 2018

  21. O’Neil, A., Shepherd, M., Beveridge, E., Goatman, K.: A comparison of texture features versus deep learning for image classification in interstitial lung disease. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 743–753. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_65

    Chapter  Google Scholar 

  22. Pisano, E.D., et al.: Diagnostic accuracy of digital versus film mammography: exploratory analysis of selected population subgroups in DMIST. Radiology 246(2), 376–383 (2008)

    Article  Google Scholar 

  23. Ramos-Pollán, R., et al.: Discovering mammography-based machine learning classifiers for breast cancer diagnosis. J. Med. Syst. 36(4), 2259–2269 (2012)

    Article  Google Scholar 

  24. Rashed, E.A., Ismail, I.A., Zaki, S.I.: Multiresolution mammogram analysis in multilevel decomposition. Pattern Recognit. Lett. 28(2), 286–292 (2007)

    Article  Google Scholar 

  25. Sahiner, B., Chan, H.P., Petrick, N., Helvie, M.A., Hadjiiski, L.M.: Improvement of mammographic mass characterization using spiculation measures and morphological features. Med. Phys. 28(7), 1455–1465 (2001)

    Article  Google Scholar 

  26. Skaane, P., Hofvind, S., Skjennald, A.: Randomized trial of screen-film versus full-field digital mammography with soft-copy reading in population-based screening program: follow-up and final results of Oslo II study. Radiology 244(3), 708–717 (2007)

    Article  Google Scholar 

  27. Tang, J., Deng, C., Huang, G.B.: Extreme learning machine for multilayer perceptron. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 809–821 (2016)

    Article  MathSciNet  Google Scholar 

  28. Wang, D., Shi, L., Heng, P.A.: Automatic detection of breast cancers in mammograms using structured support vector machines. Neurocomputing 72(13–15), 3296–3302 (2009)

    Article  Google Scholar 

  29. Yu, S., Guan, L.: A CAD system for the automatic detection of clustered microcalcifications in digitized mammogram films. IEEE Trans. Med. Imaging 19(2), 115–126 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The first and second author of this paper are thankful to Erasmus Leader project funded by European Commission for their post-doctoral and doctoral research study at University of Évora, Portugal. The first author also acknowledges his employer Aliah University for granting study leave for post-doctoral research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk. Md. Obaidullah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Obaidullah, S.M., Ahmed, S., Gonçalves, T. (2019). Effect of Image View for Mammogram Mass Classification – An Extreme Learning Based Approach. In: Barneva, R., Brimkov, V., Kulczycki, P., Tavares, J. (eds) Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2018. Lecture Notes in Computer Science(), vol 10986. Springer, Cham. https://doi.org/10.1007/978-3-030-20805-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20805-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20804-2

  • Online ISBN: 978-3-030-20805-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics