Skip to main content

Microscopic Electromagnetics

  • Chapter
  • First Online:
Electromagnetic and Optical Pulse Propagation

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 224))

  • 836 Accesses

Abstract

A mathematically rigorous, physically based development of the classical theory of electromagnetism is introduced here through a consideration of the microscopic Maxwell–Lorentz theory. Although the Lorentz theory of electrons is a purely classical, heuristic model that is incapable of analyzing many fundamental problems associated with the atomic constituency of matter, it is nevertheless an expedient model in providing the proper source terms for the microscopic Maxwell equations. Indeed, the classical Lorentz theory does yield many results connected with the electromagnetic properties of matter that agree in functional form with that given by quantum theory. In particular, the Lorentz theory assumes additional forces of just the right nature such that qualitatively correct expressions are obtained and, by empirical adjustment of the parameters appearing in these ad hoc force relations, quantitatively correct predictions may also be obtained. Even though quantum theory justifies the assumption of these additional forces and shows them to be of electrical origin, the Lorentz theory is incapable of arriving at this fundamental level of understanding.

War es ein Gott der diese Gleichungen schrieb?” Ludwig Boltzmann, quoting from Goethe’s Faust, on Maxwell’s equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The adjective “ponderomotive” describes the tendency to produce movement of a ponderable body. By a “ponderable body” is meant one having nonzero mass.

  2. 2.

    Conservation laws in nature originated with Democritus, a fifth century B.C. atomist who asserted that matter was indestructible.

  3. 3.

    This occurs, for example, in the collisional broadening of radiation from a Lorentz atom. See Chap. 12 of Stone [4] for a detailed development of collisional broadening effects in a system of Lorentz atoms.

  4. 4.

    The electron spin is a purely quantum-mechanical effect that is not susceptible to a complete analysis in classical physics. For a detailed historical discussion of this point, see Chap. VI of Kramers’ classic treatise Quantum Mechanics [7].

  5. 5.

    For a complete rigorous development of radiation reaction in the Lorentz–Abraham model, see Yaghjian’s treatise Relativistic Dynamics of a Charged Sphere [8].

  6. 6.

    Notice that no distinction need be made between the external field vectors e 0 and b 0 employed in Eq. (2.24) and the total field vectors e(r, t) and b(r, t) appearing in Eq. (2.25) at the fixed observation point P at which the test particle is introduced because dq is infinitesimally small.

  7. 7.

    Galilean invariance states that physical phenomena are the same when viewed by two observers moving with a constant velocity V relative to each other, provided that the coordinates in space and time are related by the Galilean transformation r  = r + V t, t′ = t.

  8. 8.

    The order symbol \(\mathcal {O}\) is defined as follows. Let f(z) and g(z) be two functions of the complex variable z that possess limits as z → z 0 in some domain \(\mathcal {D}\). Then \(f(z) = \mathcal {O}(g(z))\) as z → z 0 iff there exist positive constants K and δ such that |f(z)|≤ K|g(z)| whenever 0 < |z − z 0| < δ.

  9. 9.

    While it is practically impossible to measure a zero rest mass, upper limits on the rest mass of a photon have been obtained experimentally by Fischbach et al. [33]. Their results provide a geomagnetic limit given by m γ ≤ 1 × 10−48 g, eighteen orders of magnitude smaller than the rest mass m e of an electron.

  10. 10.

    This result was also derived by Oliver Heaviside in the same year.

  11. 11.

    See J. J. Thompson, Recent Researches, pp. 251–387.

  12. 12.

    Leopold Kronecker (1823–1891) introduced this delta function in his 1866 paper “Über bilineare Formen” presented to the Royal Prussian Academy of Sciences in Berlin that was later published in the Monthly Bulletin of the Academy in 1868.

  13. 13.

    For an electrostatic field this force is given by \(\mathcal {T}_{ij}n_jda\) at the surface \(\mathcal {S}\) of a conductor, the sign change accounting for the fact that the unit normal vector \(\hat {\mathbf {n}}\) is directed outwards from the conductor body. Because the electric field is normal on the surface of a perfect conductor, then \(d\mathbf {f}(\mathbf {r})/da = \|\frac {1}{4\pi }\|\frac {1}{2}\epsilon _0e^2\hat {\mathbf {n}} = \frac {\|4\pi \|}{2\epsilon _0}\rho _s^2(\mathbf {r})\hat {\mathbf {n}} = \frac {1}{2}\rho _s(\mathbf {r})\mathbf {e}(\mathbf {r})\) when \(\mathbf {r} \in \mathcal {S}\).

References

  1. J. C. Maxwell, “A dynamical theory of the electromagnetic field,” Phil. Trans. Roy. Soc. (London), vol. 155, pp. 450–521, 1865.

    Google Scholar 

  2. J. C. Maxwell, A Treatise on Electricity and Magnetism. Oxford: Oxford University Press, 1873.

    MATH  Google Scholar 

  3. H. A. Lorentz, The Theory of Electrons. Leipzig: Teubner, 1906. Ch. IV.

    Google Scholar 

  4. J. M. Stone, Radiation and Optics, An Introduction to the Classical Theory. New York: McGraw-Hill, 1963.

    Google Scholar 

  5. A. Einstein, Out of My Later Years. New York: Philosophical Library, 1950. pp. 76–77.

    MATH  Google Scholar 

  6. L. Rosenfeld, Theory of Electrons. Amsterdam: North-Holland, 1951.

    MATH  Google Scholar 

  7. H. A. Kramers, Quantum Mechanics. Amsterdam: North-Holland, 1957.

    MATH  Google Scholar 

  8. A. D. Yaghjian, Relativistic Dynamics of a Charged Sphere. Berlin-Heidelberg: Springer-Verlag, 1992.

    Book  Google Scholar 

  9. K. I. Golden and G. Kalman, “Phenomenological electrodynamics of two-dimensional Coulomb systems,” Phys. Rev. B, vol. 45, no. 11, pp. 5834–5837, 1992.

    Article  ADS  Google Scholar 

  10. K. I. Golden and G. Kalman, “Phenomenological electrodynamics of electronic superlattices,” Phys. Rev. B, vol. 52, no. 20, pp. 14719–14727, 1995.

    Article  ADS  Google Scholar 

  11. K. I. Golden and G. J. Kalman, “Quasilocalized charge approximation in strongly coupled plasma physics,” Physics of Plasmas, vol. 7, no. 1, pp. 14–32, 2000.

    Article  ADS  Google Scholar 

  12. N. Bohr and L. Rosenfeld, “Field and charge measurements in quantum electrodynamics,” Phys. Rev., vol. 78, no. 6, pp. 794–798, 1950.

    Article  ADS  Google Scholar 

  13. M. Faraday, Experimental Researches in Electricity. London: Bernard Quaritch, 1855.

    Google Scholar 

  14. P. Penfield and H. A. Haus, Electrodynamics of Moving Media. Cambridge, MA: M.I.T. Press, 1967.

    Google Scholar 

  15. A. M. Ampère, “Memoir on the mutual action of two electric currents,” Annales de Chimie et Physique, vol. 15, pp. 59–76, 1820.

    Google Scholar 

  16. H. Poincaré, Electricité et Optique. Paris: Carré Nadaud, 1901.

    MATH  Google Scholar 

  17. H. Poincaré, La Science et l’hypothése. Paris: Flammarion, 1902.

    MATH  Google Scholar 

  18. H. Poincaré, “Sur la dynamique de l’électron,” Comptes rendus Acad. Sci. Paris, vol. 140, pp. 1504–1508, 1905.

    ADS  MATH  Google Scholar 

  19. H. A. Lorentz, “Electromagnetic phenomena in a system moving with any velocity less than that of light,” Proc. Acad. Sci. Amsterdam, vol. 6, pp. 809–832, 1904.

    Google Scholar 

  20. K. F. Gauss, “Theoria Attractionis Corporum Sphaeroidicorum Ellipticorum Homogeneorum,” in Werke, vol. 5, pp. 1–22, Göttingen: Royal Society of Science, 1870.

    Google Scholar 

  21. T. Young, “Experiments and calculations relative to physical optics,” in Miscellaneous Works (G. Peacock, ed.), vol. 1, pp. 179–191, London: John Murray Publishers, 1855. p.188.

    Google Scholar 

  22. J. Bradley, “An account of a new discovered motion of the fix’d stars,” Phil. Trans. Roy. Soc. (London), vol. 35, pp. 637–660, 1728.

    Article  Google Scholar 

  23. A. A. Michelson and E. W. Morley, “On the relative motion of the Earth and the luminiferous ether,” Am. J. Sci., no. 203, pp. 333–345, 1887.

    Article  ADS  Google Scholar 

  24. F. T. Trouton and H. R. Noble, “Forces acting on a charged condenser moving through space,” Proc. Roy. Soc. (London), vol. 72, pp. 132–133, 1903.

    Google Scholar 

  25. J. H. Poincaré, “L’etat actuel et l’avenir de la physique mathématique,” Bull. Sci. Math., vol. 28, pp. 302–324, 1904. English translation in Monist, vol. 15, 1 (1905).

    Google Scholar 

  26. A. Einstein, “Zur elektrodynamik bewegter körper,” Ann. Phys., vol. 17, pp. 891–921, 1905.

    Article  Google Scholar 

  27. R. Resnick, Introduction to Special Relativity. New York: John Wiley & Sons, 1968.

    Google Scholar 

  28. J. V. Bladel, Relativity and Engineering. Berlin-Heidelberg: Springer-Verlag, 1984.

    Book  Google Scholar 

  29. A. S. Eddington, The Mathematical Theory of Relativity. New York: Chelsea, third ed., 1975. Section 5.

    Google Scholar 

  30. P. M. Morse and H. Feshbach, Methods of Theoretical Physics. New York: McGraw-Hill, 1953. Vol. I.

    Google Scholar 

  31. H. A. Lorentz, Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegten Körpern. Leiden: E. J. Brill, 1895. Sections 89–92. English translation: “Michelson’s Interference Experiment,” in The Principle of Relativity. A Collection of Original Memoirs on the Special and General Theory of Relativity by A. Einstein, H. A. Lorentz, H. Minkowski, and H. Weyl, New York: Dover, 1958.

    Google Scholar 

  32. L. D. Broglie, Matière et Lumière. Paris: Albin Michel, 1937.

    Google Scholar 

  33. E. Fischbach, H. Kloor, R. A. Langel, A. T. Y. Lui, and M. Peredo, “New geomagnetic limits on the photon mass and on long-range forces coexisting with electromagnetism,” Phys. Rev. Lett., vol. 73, no. 4, pp. 514–517, 1994.

    Article  ADS  Google Scholar 

  34. G. Feinberg, “Possibility of faster-than-light particles,” Phys. Rev., vol. 159, no. 5, pp. 1089–1105, 1967.

    Article  ADS  Google Scholar 

  35. O.-M. Bilaniuk and E. C. G. Sudarshan, “Particles beyond the light barrier,” Physics Today, vol. 22, no. 5, pp. 43–51, 1969.

    Article  Google Scholar 

  36. A. Stewart, “The discovery of stellar aberration,” Scientific American, vol. 210, no. 3, p. 100, 1964.

    Article  Google Scholar 

  37. M. Born, Einstein’s Theory of Relativity. New York: Dover, 1962.

    Google Scholar 

  38. J. H. Poynting, “Transfer of energy in the electromagnetic field,” Phil. Trans., vol. 175, pp. 343–361, 1884.

    Article  Google Scholar 

  39. G. Nicolis, Introduction to Nonlinear Science. Cambridge: Cambridge University Press, 1995. Section 2.2.

    Google Scholar 

  40. W. S. Franklin, “Poynting’s theorem and the distribution of electric field inside and outside of a conductor carrying electric current,” Phys. Rev., vol. 13, no. 3, pp. 165–181, 1901.

    ADS  Google Scholar 

  41. MacDonald, Electric Waves. Cambridge: Cambridge University Press, 1902.

    Google Scholar 

  42. Livens, The Theory of Electricity. Cambridge: Cambridge University Press, 1926. pp. 238 ff.

    Google Scholar 

  43. Mason and Weaver, The Electromagnetic Field. Chicago: University of Chicago Press, 1929. pp. 264 ff.

    Google Scholar 

  44. J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941.

    MATH  Google Scholar 

  45. M. Abraham, “Prinzipien der Dynamik der Elektrons,” Ann. Physik, vol. 10, pp. 105–179, 1903.

    MATH  Google Scholar 

  46. H. B. Phillips, Vector Analysis. New York: John Wiley & Sons, 1933.

    MATH  Google Scholar 

  47. L. Silberstein, “Electromagnetische Grundgleichungen in bivectorielle Behandlung,” Ann. Phys., vol. 22, pp. 579–586, 1907.

    Article  Google Scholar 

  48. L. Silberstein, “Electromagnetische Grundgleichungen in bivectorielle Behandlung,” Ann. Phys., vol. 24, pp. 783–784, 1907.

    Article  Google Scholar 

  49. H. Bateman, The Mathematical Analysis of Electrical & Optical Wave-Motion. Cambridge: Cambridge University Press, 1905.

    Google Scholar 

  50. D. B. Malament, “On the time reversal invariance of classical electromagnetic theory,” Studies in History and Philosophy of Modern Physics, vol. 35, pp. 295–315, 2004.

    Article  ADS  MathSciNet  Google Scholar 

  51. A. Rubinowicz, “Uniqueness of solution of Maxwell’s equations,” Phys. Zeits., vol. 27, pp. 707–710, 1926.

    Google Scholar 

  52. B. Greene, The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. New York: W. W. Norton & Company, 1999.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oughstun, K.E. (2019). Microscopic Electromagnetics. In: Electromagnetic and Optical Pulse Propagation . Springer Series in Optical Sciences, vol 224. Springer, Cham. https://doi.org/10.1007/978-3-030-20835-6_2

Download citation

Publish with us

Policies and ethics