Skip to main content

A New Hybrid Particle Swarm Optimization and Evolutionary Algorithm

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Abstract

Particle swarm optimization (PSO) has proved fast convergence in many optimization problems but still has the main drawback - falling in a local minimum. This paper presents a new Hybrid Particle Swarm Optimization and Evolutionary algorithm (HPSO-E) to solve this problem by introducing a new population of children particles obtained by applying a mutation and crossover operators taken from the evolutionary algorithm. In this way, we connect the best properties of the algorithms: fast convergence of the PSO and ability to global search introduced by the evolutionary algorithm. The novel hybrid algorithm shows sufficient convergence for unimodal benchmark function and excellent convergence for selected hard multimodal benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelbari, H., Shafi, K.: Learning structures of conceptual models from observed dynamics using evolutionary echo state networks. J. Artif. Intell. Soft Comput. Res. 8(2), 133–154 (2018)

    Article  Google Scholar 

  2. Alexandridis, A., Chondrodima, E., Sarimveis, H.: Cooperative learning for radial basis function networks using particle swarm optimization. Appl. Soft Comput. 49, 485–497 (2016)

    Article  Google Scholar 

  3. Ali, A.F., Tawhid, M.A.: A hybrid particle swarm optimization and genetic algorithm with population partitioning for large scale optimization problems. Ain Shams Eng. J. 8(2), 191–206 (2017)

    Article  Google Scholar 

  4. Alsumait, J., Sykulski, J., Al-Othman, A.: A hybrid GA–PS–SQP method to solve power system valve-point economic dispatch problems. Appl. Energy 87(5), 1773–1781 (2010)

    Article  Google Scholar 

  5. Behrang, M.A., Assareh, E., Noghrehabadi, A.R., Ghanbarzadeh, A.: New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique. Energy 36(5), 3036–3049 (2011)

    Article  Google Scholar 

  6. Cervantes, A., Galván, I.M., Isasi, P.: AMPSO: a new particle swarm method for nearest neighborhood classification. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(5), 1082–1091 (2009)

    Article  Google Scholar 

  7. Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks 2005, Montreal, pp. 1764–1769 (2005)

    Google Scholar 

  8. Cpałka, K., Rutkowski, L.: A new method for designing and reduction of neuro-fuzzy systems. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2006), Vancouver, BC, Canada, pp. 8510–8516 (2006)

    Google Scholar 

  9. Cpałka, K., Rutkowski, L.: Evolutionary learning of flexible neuro-fuzzy systems. In: Proceedings of the 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2008), Hong Kong, CD, 1–6 June, pp. 969–975 (2008)

    Google Scholar 

  10. Dawar, D., Ludwig, S.A.: Effect of strategy adaptation on differential evolution in presence and absence of parameter adaptation: an investigation. J. Artif. Intell. Soft Comput. Res. 8(3), 211–235 (2018)

    Article  Google Scholar 

  11. Davoodi, E., Hagh, M.T., Zadeh, S.G.: A hybrid Improved Quantum-behaved Particle Swarm Optimization–Simplex method (IQPSOS) to solve power system load flow problems. Appl. Soft Comput. 21, 171–179 (2014)

    Article  Google Scholar 

  12. Dziwiński, P., Avedyan, E.D.: A new approach to nonlinear modeling based on significant operating points detection. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 364–378. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19369-4_33

    Chapter  Google Scholar 

  13. Dziwiński, P., Avedyan, E.D.: A new method of the intelligent modeling of the nonlinear dynamic objects with fuzzy detection of the operating points. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 293–305. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_25

    Chapter  Google Scholar 

  14. Dziwiński, P., Bartczuk, Ł., Tingwen, H.: A method for non-linear modelling based on the capabilities of PSO and GA algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 221–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_21

    Chapter  Google Scholar 

  15. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43 (1995)

    Google Scholar 

  16. Esmin, A.A.A., Lambert-Torres, G., Alvarenga, G.B.: Hybrid evolutionary algorithm based on PSO and GA mutation. In: 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS 2006), p. 57. IEEE (2006)

    Google Scholar 

  17. Esmin, A.A., Matwin, S.: HPSOM: a hybrid particle swarm optimization algorithm with genetic mutation. Int. J. Innov. Comput. Inf. Control. 9(5), 1919–1934 (2013)

    Google Scholar 

  18. Fang, N., Zhou, J., Zhang, R., Liu, Y., Zhang, Y.: A hybrid of real coded genetic algorithm and artificial fish swarm algorithm for short-term optimal hydrothermal scheduling. Int. J. Electr. Power Energy Syst. 62, 617–629 (2014)

    Article  Google Scholar 

  19. Gabryel, M.: The bag-of-words method with different types of image features and dictionary analysis. J. Univers. Comput. Sci. 24(4), 357–371 (2018)

    MathSciNet  Google Scholar 

  20. Han, H.G., Lu, W., Hou, Y., Qiao, J.F.: An adaptive-PSO-based self-organizing RBF neural network. IEEE Trans. Neural Netw. Learn. Syst. 29(1), 104–117 (2018)

    Article  MathSciNet  Google Scholar 

  21. Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1931–1938. IEEE (1999)

    Google Scholar 

  22. Liang, J.J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, SIS, pp. 124–129. IEEE (2005)

    Google Scholar 

  23. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)

    Article  Google Scholar 

  24. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 217–232. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_20

    Chapter  Google Scholar 

  25. Łapa, K., Cpałka, K., Przybył, A., Grzanek, K.: Negative space-based population initialization algorithm (NSPIA). In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 449–461. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_42

    Chapter  Google Scholar 

  26. Łapa, K., Cpałka, K., Przybył, A.: Genetic programming algorithm for designing of control systems. Inf. Technol. Control. 47(5), 668–683 (2018)

    Google Scholar 

  27. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

    Article  Google Scholar 

  28. Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11(4), 3658–3670 (2011)

    Article  Google Scholar 

  29. Nowicki, R.K., Starczewski, J.T.: A new method for classification of imprecise data using fuzzy rough fuzzification. Inf. Sci. 414, 33–52 (2017)

    Article  Google Scholar 

  30. Ramadan, H.S., Bendary, A.F., Nagy, S.: Particle swarm optimization algorithm for capacitor allocation problem in distribution systems with wind turbine generators. Int. J. Electr. Power Energy Syst. 84, 143–152 (2017)

    Article  Google Scholar 

  31. Rotar, C., Iantovics, L.B.: Directed evolution – a new metaheuristc for optimization. J. Artif. Intell. Soft Comput. Res. 7(3), 183–200 (2017)

    Article  Google Scholar 

  32. Rutkowski, L., Cpałka, K., Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), Orchid Country Club, Singapore, CD, 18–22 November (2002)

    Google Scholar 

  33. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, 26–29 July, vol. 2, pp. 1031–1036 (2004)

    Google Scholar 

  34. Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R., Rutkowski, L.: A content-based recommendation system using neuro-fuzzy approach. In: FUZZ-IEEE 2018, pp. 1–8 (2018)

    Google Scholar 

  35. Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R.: Towards interpretability of the movie recommender based on a neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10842, pp. 752–762. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91262-2_66

    Chapter  Google Scholar 

  36. Sadiqbatcha, S., Jafarzadeh, S., Ampatzidis, Y.: Particle swarm optimization for solving a class of type-1 and type-2 fuzzy nonlinear equations. J. Artif. Intell. Soft Comput. Res. 8(2), 103–110 (2018)

    Article  Google Scholar 

  37. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98TH8360), pp. 69–73. IEEE (1998)

    Google Scholar 

  38. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In: Porto, V.W., Saravanan, N., Waagen, D., Eiben, A.E. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0040810

    Chapter  Google Scholar 

  39. Starczewski, J.T.: Centroid of triangular and gaussian type-2 fuzzy sets. Inf. Sci. 280, 289–306 (2014)

    Article  MathSciNet  Google Scholar 

  40. Starczewski, J.T., Nieszporek, K., Wróbel, M., Grzanek, K.: A fuzzy SOM for understanding incomplete 3D faces. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10842, pp. 73–80. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91262-2_7

    Chapter  Google Scholar 

  41. Tambouratzis, G.: Using particle swarm optimization to accurately identify syntactic phrases in free text. J. Artif. Intell. Soft Comput. Res. 8(1), 63–67 (2018)

    Article  Google Scholar 

  42. Trelea, I.C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

    Article  MathSciNet  Google Scholar 

  43. Vlachogiannis, J.G., Lee, K.Y.: A comparative study on particle swarm optimization for optimal steady-state performance of power systems. IEEE Trans. Power Syst. 21(4), 1718–1728 (2006)

    Article  Google Scholar 

  44. Wang, L., Yang, B., Orchard, J.: Particle swarm optimization using dynamic tournament topology. Appl. Soft Comput. 48, 584–596 (2016)

    Article  Google Scholar 

  45. Yang, S., Sato, Y.: Swarm intelligence algorithm based on competitive predators with dynamic virtual teams. J. Artif. Intell. Soft Comput. Res. 7(2), 87–101 (2017)

    Article  Google Scholar 

  46. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 493–502. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38658-9_44

    Chapter  Google Scholar 

  47. Zalasiński, M., Cpałka, K., Er, M.J.: A new method for the dynamic signature verification based on the stable partitions of the signature. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9120, pp. 161–174. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19369-4_16

    Chapter  Google Scholar 

  48. Zalasiński, M., Cpałka, K., Hayashi, Y.: A new approach to the dynamic signature verification aimed at minimizing the number of global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 218–231. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_20

    Chapter  Google Scholar 

  49. Zalasiński, M., Cpałka, K., Rakus-Andersson, E.: An idea of the dynamic signature verification based on a hybrid approach. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 232–246. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_21

    Chapter  Google Scholar 

  50. Zalasiński, M., Cpałka, K.: New algorithm for on-line signature verification using characteristic hybrid partitions. In: Wilimowska, Z., Borzemski, L., Grzech, A., Świątek, J. (eds.) Information Systems Architecture and Technology: Proceedings of 36th International Conference on Information Systems Architecture and Technology – ISAT 2015 – Part IV. AISC, vol. 432, pp. 147–157. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28567-2_13

    Chapter  Google Scholar 

  51. Zhang, Y., Zhao, Y., Fu, X., Xu, J.: A feature extraction method of the particle swarm optimization algorithm based on adaptive inertia weight and chaos optimization for Brillouin scattering spectra. Opt. Commun. 376, 56–66 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Piotr Dziwiński or Łukasz Bartczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dziwiński, P., Bartczuk, Ł., Goetzen, P. (2019). A New Hybrid Particle Swarm Optimization and Evolutionary Algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11508. Springer, Cham. https://doi.org/10.1007/978-3-030-20912-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20912-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20911-7

  • Online ISBN: 978-3-030-20912-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics