Skip to main content

Connective Tissues of the Posterior Aspect of the Trunk

  • Chapter
  • First Online:
Spinal Anatomy
  • 2222 Accesses

Abstract

The difficulty in approaching the description of the connective tissues of the back, or of any other area of the body, lies in the diversity of aspects of these tissues.

The interlinking and overlapping of different connective structures, the transitional forms, and the lack of literature on their mechanical properties add to the difficulty to describe them.

Amongst the connective tissues, fasciae remain poorly researched and poorly understood. The inaccuracy of the vocabulary and terminologies that remain in use today work against a clear, understandable and precise description of the roles of these tissues in human function.

This chapter reviews the main attempts at organising, describing, and defining connective tissues of the back. It also describes the different layers in three portions (cervico-cranial, thoracic, and lumbosacral) while making a clear choice on the vocabulary used (“fascia”, “aponeurosis”, etc.), and defining the anatomical insertions and parts, as well as the mechanical and neurological properties of each layer.

Connective tissues have a fundamental role in providing proprioceptive and nociceptive information, and in spreading the mechanical forces of the muscles, avoiding localised stresses on bony segments.

They compose a continuous network of sheaths that individualise and link different anatomical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DAT:

Deep adipose tissue

dPLF:

Deep lamina of the posterior layer of the fascia profundis

FS:

Fascia superficialis

GM:

Gluteus maximus muscle

IC:

Iliocostalis muscle

L:

Longissimus muscle

Lcap:

Longus capitis muscle

Lcol:

Longus colli muscle

LD:

Latissimus dorsi muscle

LS:

Levator scapulae muscle

M:

Multifidus muscle

EO:

External oblique muscle

IO:

Internal oblique muscle

P:

Psoas muscle

PLF:

Posterior layer of the fascia profundis

QL:

Quadratus lumborum muscle

R:

Rotatores muscle

R1:

1st rib

R12:

12th rib

Rh:

Rhomboidus muscle

S:

Spinalis muscle

SAT:

Superficial adipose tissue

Sc:

Scalene muscles

Scap:

Splenius capitis muscle

Scerv:

Splenius cervicis muscle

SCM:

Sternocleidomastoid muscle

Sp:

Splenius muscles

SPi:

Serratus posterior inferior muscle

SPs:

Serratus posterior superior muscle

sPLF:

Superficial lamina of the posterior layer of the fascia profundis

SSp:

Semispinalis muscle

T:

Trapezius muscle

Ti:

Inferior fibres of the trapezius muscle

Tra:

Transversus abdominis muscle

References

  1. Liptan GL. Fascia: a missing link in our understanding of the pathology of fibromyalgia. J Bodyw Mov Ther. 2010;14(1):3–12.

    Article  PubMed  Google Scholar 

  2. Leeson CR, Leeson TS. Histology. 3rd ed. Philadelphia: Saunders; 1976. p. 605.

    Google Scholar 

  3. Schleip R, Jäger H, Klingler W. What is ‘fascia’? A review of different nomenclatures. J Bodyw Mov Ther. 2012;16(4):496–502.

    Article  PubMed  Google Scholar 

  4. Findley T, Chaudhry H, Stecco A, Roman M. Fascia research – a narrative review. J Bodyw Mov Ther. 2012;16(1):67–75.

    Article  PubMed  Google Scholar 

  5. Bonnel F. Les muscles, membre supérieur: nouvelle anatomie, biomécanique, chirurgie, rééducation. Montpellier: Sauramps Médical; 2011.

    Google Scholar 

  6. Hyrtl J. Onomatologia anatomica. Vienna: Wien W. Braumüller; 1880.

    Google Scholar 

  7. Ercoli A, Delmas V, Fanfani F, Gadonneix P, Ceccaroni M, Fagotti A, et al. Terminologia anatomica versus unofficial descriptions and nomenclature of the fasciae and ligaments of the female pelvis: a dissection-based comparative study. Am J Obstet Gynecol. 2005;193(4):1565–73.

    Article  PubMed  Google Scholar 

  8. Kachlik D, Baca V, Bozdechova I, Cech P, Musil V. Anatomical terminology and nomenclature: past, present and highlights. Surg Radiol Anat. 2008;30(6):459–66.

    Article  PubMed  Google Scholar 

  9. Kachlik D, Bozdechova I, Cech P, Musil V, Baca V. Mistakes in the usage of anatomical terminology in clinical practice. Biomed Pap. 2009;153(2):157–61.

    Article  Google Scholar 

  10. Stecco C. Why are there so many discussions about the nomenclature of fasciae? J Bodyw Mov Ther. 2014;18(3):441–2.

    Article  PubMed  Google Scholar 

  11. Bove GM. Weaving a mat of fascia research. J Bodyw Mov Ther. 2012;16(2):132–3.

    Article  PubMed  Google Scholar 

  12. Chaitow L. Learning about fascia. J Bodyw Mov Ther. 2011;15(1):1–2.

    Article  PubMed  Google Scholar 

  13. Kumka M, Bonar J. Fascia: a morphological description and classification system based on a literature review. J Can Chiropr Assoc. 2012;56(3):179–91.

    PubMed  PubMed Central  Google Scholar 

  14. Hedley G. Fascia science and clinical applications: editorial. J Bodyw Mov Ther. 2012;16(4):494–5.

    Article  PubMed  Google Scholar 

  15. Langevin HM, Huijing PA. Communicating about fascia: history, pitfalls, and recommendations. Int J Ther Massage Bodywork. 2009;2(4):3–8.

    PubMed  PubMed Central  Google Scholar 

  16. Wendell-Smith. Fascia: an illustrative problem in international terminology. Surg Radiol Anat. 1997;19:173–277.

    Article  Google Scholar 

  17. Standring S, editor. Gray’s anatomy: the anatomical basis of clinical practice. 41st ed. New York: Elsevier; 2016. p. 1562.

    Google Scholar 

  18. Kardon G. Development of the musculoskeletal system: meeting the neighbors. Development. 2011;138(14):2855–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kieny M, Chevallier A. Autonomy of tendon development in the embryonic chick wing. J Embryol Exp Morphol. 1979;49:153–65.

    CAS  PubMed  Google Scholar 

  20. Rouvière H, Delmas A, Delmas V. Anatomie humaine, descriptive, topographique et fonctionnelle: Tome 2, Tronc. Paris: Masson; 1940.

    Google Scholar 

  21. Bourgery M, Jacob AM. Anatomie élémentaire en 20 planches. Paris: Crochard; 1843.

    Google Scholar 

  22. Drake RL, Vogl W, Mitchell AWM, Paulsen F. Gray’s anatomie pour les étudiants. Paris: Elsevier; 2006.

    Google Scholar 

  23. Willard FH, Vleeming A, Schuenke MD, Danneels L, Schleip R. The thoracolumbar fascia: anatomy, function and clinical considerations: the thoracolumbar fascia. J Anat. 2012;221(6):507–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robinson A, editor. Cunningam’s text-book of anatomy. New York: William Wood and Company; 1918.

    Google Scholar 

  25. Godman JD. Anatomical investigations. Philadelphia: H.C. Carey & I. Lea; 1824.

    Google Scholar 

  26. Thomson A, Schafer EA, Thane GD. Quain’s - elements of anatomy. London: Longman, Green & Co.; 1882.

    Google Scholar 

  27. Abu-Hijleh MF, Roshier AL, Al-Shboul Q, Dharap AS, Harris PF. The membranous layer of superficial fascia: evidence for its widespread distribution in the body. Surg Radiol Anat. 2006;28(6):606–19.

    Article  CAS  PubMed  Google Scholar 

  28. Lancerotto L, Stecco C, Macchi V, Porzionato A, Stecco A, De Caro R. Layers of the abdominal wall: anatomical investigation of subcutaneous tissue and superficial fascia. Surg Radiol Anat. 2011;33(10):835–42.

    Article  PubMed  Google Scholar 

  29. Lockwood TE. Superficial fascial system (SFS) of the trunk and extremities: a new concept. Plast Reconstr Surg. 1991;87(6):1009–18.

    Article  CAS  PubMed  Google Scholar 

  30. Stecco L, Basmanjian JV, Day JA. Fascial manipulation for musculoskeletal pain. Padova: Piccin; 2004. p. 251.

    Google Scholar 

  31. Tank P, Gest TR. Atlas d’anatomie. Bruxelles: De Boeck; 2010.

    Google Scholar 

  32. Loukas M, Shoja MM, Thurston T, Jones VL, Linganna S, Tubbs RS. Anatomy and biomechanics of the vertebral aponeurosis part of the posterior layer of the thoracolumbar fascia. Surg Radiol Anat. 2008;30(2):125–9.

    Article  PubMed  Google Scholar 

  33. Testut L. Traité d’anatomie humaine: anatomie descriptive, histologie, développement. Paris: O. Doin; 1896. p. 1212.

    Google Scholar 

  34. Macalister A. A text-book of human anatomy. London: Griffin; 1889.

    Google Scholar 

  35. Buchanan AM. Manual of anatomy, systematic and practical, including embryology. Toronto: Macmillan; 1916.

    Book  Google Scholar 

  36. Gray H, Lewis WH. Anatomy of the human body. 20th ed. Philadelphia: Lea & Febiger; 1918.

    Google Scholar 

  37. Bogduk N, Twomey LT. Clinical anatomy of the lumbar spine. 2nd ed. Melbourne/New York: Churchill Livingstone; 1986. p. 197.

    Google Scholar 

  38. Cruveilhier J. Traité d’anatomie descriptive. Tome 1. 5th ed. Paris: P. Asselin; 1871.

    Google Scholar 

  39. Kamina P. Précis d’anatomie clinique. Tome II. Paris: Maloine; 2002.

    Google Scholar 

  40. Holmes T, Carter HV, Gray H, Guise WJ. Anatomy, descriptive and surgical. London: Longmans, Green; 1875.

    Google Scholar 

  41. Luther H. Holden’s anatomy: a manual of the dissection of the human body. Philadelphia: P. Blakiston’s Son; 1901.

    Google Scholar 

  42. Sappey PC. Traité d’anatomie descriptive T2. Paris: Medical Heritage Library; 1876.

    Google Scholar 

  43. Spalteholz W. Hand-atlas of human anatomy. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 1861.

    Google Scholar 

  44. Agur AMR, Lee MJ, Anderson JE. Grant’s atlas of anatomy. 9th ed. Baltimore: Lippincott Williams & Wilkins; 1991. p. 650.

    Google Scholar 

  45. Hansen JT, Weber EC. Netter’s atlas of human anatomy. Basel: Novartis; 2014.

    Google Scholar 

  46. Schünke M, Schulte E, Schumacher U, Rude J, Voll M, Wesker K. Atlas d’anatomie Prométhée. Paris: Maloine; 2006.

    Google Scholar 

  47. Cleland J. Examen clinique de l’appareil locomoteur. Amsterdam: Elsevier Masson; 2007.

    Google Scholar 

  48. Clemente CD. Anatomy - a regional atlas of the human body. 6th ed. Baltimore: Lippincott Williams & Wilkins; 2011.

    Google Scholar 

  49. Gatton ML, Pearcy MJ, Pettet GJ, Evans JH. A three-dimensional mathematical model of the thoracolumbar fascia and an estimate of its biomechanical effect. J Biomech. 2010;43(14):2792–7.

    Article  CAS  PubMed  Google Scholar 

  50. Hewer EE. The development of nerve endings in the human foetus. J Anat. 1935;69:369–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lewis J, Chevallier A. Muscle nerve branches do not develop in chick wings devoid of muscle. J Embryol Exp Morphol. 1981;64:211–32.

    CAS  PubMed  Google Scholar 

  52. Tesarz J, Hoheisel U, Wiedenhöfer B, Mense S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience. 2011;194:302–8.

    Article  CAS  PubMed  Google Scholar 

  53. Wyke B. Articular neurology - a review. Physiotherapy. 1972;58:94–9.

    CAS  PubMed  Google Scholar 

  54. Bove GM, Light AR. Unmyelinated nociceptors of rat paraspinal tissues. J Neurophysiol. 1995;73(5):1752–62.

    Article  CAS  PubMed  Google Scholar 

  55. Mitchell JH, Schmidt RF. Cardiovascular reflex control by afferent fibers from skeletal muscle receptors. In: Terjung R, editor. Comprehensive physiology. Hoboken: Wiley; 1983.

    Google Scholar 

  56. Wyke B. The neurology of joints. Ann R Coll Surg Engl. 1967;41(1):25–50.

    Google Scholar 

  57. Paintal AS. Functional analysis of Group III afferent fibres of mammalian muscles. J Physiol. 1960;152(2):250–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stilwell DL. Regional variations in the innervation of deep fasciae and aponeuroses. Anat Rec. 1957;127(4):635–53.

    Article  PubMed  Google Scholar 

  59. Stilwell DL. The innervation of tendons and aponeuroses. Am J Anat. 1957;100(3):289–317.

    Article  PubMed  Google Scholar 

  60. Freeman MAR, Wyke B. The innervation of the knee joint. An anatomical and histological study in the cat. J Anat. 1967;101:505–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Yahia L, Rhalmi S, Newman N, Isler M. Sensory innervation of human thoracolumbar fascia: an immunohistochemical study. Acta Orthop Scand. 1992;63(2):195–7.

    Article  CAS  PubMed  Google Scholar 

  62. Grigg A, Hoffman AH, Fogarty KE. Properties of Golgi-Mazzoni afferents in cat knee joint capsule, as revealed by mechanical studies of isolated joint capsule. J Neurophysiol. 1982;47(1):31–40.

    Article  CAS  PubMed  Google Scholar 

  63. Kiter E, Karaboyun T, Tufan AC, Acar K. Immunohistochemical demonstration of nerve endings in iliolumbar ligament. Spine. 2010;35(4):E101–4.

    Article  PubMed  Google Scholar 

  64. Houk J, Henneman E. Responses of Golgi tendon organs to active contractions of the soleus muscle of the cat. J Neurophysiol. 1967;30(3):466–81.

    Article  CAS  PubMed  Google Scholar 

  65. Barker D, Hunt CC, McIntyre AK. Muscle receptors. Berlin: Springer; 1974.

    Book  Google Scholar 

  66. Barrett KE, Ganong WF. Ganong’s review of medical physiology. New York: McGraw-Hill Medical; 2010.

    Google Scholar 

  67. Mense S. Effects of temperature on the discharges of muscle spindles and tendon organs. Pflugers Arch - Eur J Physiol. 1978;374(2):159–66.

    Article  CAS  Google Scholar 

  68. Eldred E, Lindsley DF, Buchwald JS. The effect of cooling on mammalian muscle spindles. Exp Neurol. 1960;2(2):144–57.

    Article  CAS  PubMed  Google Scholar 

  69. Schleip R. Possibilities and limitations of fascia oriented concepts in research and treatment of low back and pelvic pain. In: 8th Interdisciplinary World Congress on Low Back & Pelvic Pain, Dubai, 2013; 2013. Available from https://www.fasciaresearch.com/literature/wc-low-back-and-pelvic-pain/Schleip2013_PossibilitiesandLimitations.pdf.

  70. Nowlan NC, Sharpe J, Roddy KA, Prendergast PJ, Murphy P. Mechanobiology of embryonic skeletal development: insights from animal models. Birth Defects Res Pt C. 2010;90(3):203–13.

    Article  CAS  Google Scholar 

  71. Blechschmidt E, Gasser RF. Biokinetics and biodynamics of human differentiation: principles and applications. Berkeley: North Atlantic Books; 2014.

    Google Scholar 

  72. Blechschmidt E, Freeman B. The ontogenetic basis of human anatomy: a biodynamic approach to development from conception to birth. Murrieta: Pacific Distributing/North Atlantic Books; 2004. p. 255.

    Google Scholar 

  73. Chevallier A, Kieny M. On the role of the connective tissue in the patterning of the chick limb musculature. Wilhelm Roux’s Arch Dev Biol. 1982;191(4):277–80.

    Article  Google Scholar 

  74. Kieny M, Mauger A, Chevallier A, Pautou M-P. Origin and development of avian skeletal musculature. Reprod Nutr Dev. 1988;28(3B):673–86.

    Article  CAS  PubMed  Google Scholar 

  75. Charvet B, Ruggiero F, Guellec DL. The development of the myotendinous junction. A review. Muscles Ligaments Tendons J. 2012;2(2):53–63.

    PubMed  PubMed Central  Google Scholar 

  76. Stopak D, Harris AK. Connective tissue morphogenesis by fibroblast traction. Dev Biol. 1982;90(2):383–98.

    Article  CAS  PubMed  Google Scholar 

  77. Monti RJ, Roy RR, Hodgson JA, Reggie Edgerton V. Transmission of forces within mammalian skeletal muscles. J Biomech. 1999;32(4):371–80.

    Article  CAS  PubMed  Google Scholar 

  78. Bogduk N, Johnson G, Spalding D. The morphology and biomechanics of latissimus dorsi. Clin Biomech. 1998;13(6):377–85.

    Article  Google Scholar 

  79. Barker PJ, Briggs CA, Bogeski G. Tensile transmission across the lumbar fasciae in unembalmed cadavers: effects of tension to various muscular attachments. Spine. 2004;29(2):129–38.

    Article  PubMed  Google Scholar 

  80. Barker PJ, Freeman AD, Urquhart DM, Anderson CR, Briggs CA. The middle layer of lumbar fascia can transmit tensile forces capable of fracturing the lumbar transverse processes: an experimental study. Clin Biomech. 2010;25(6):505–9.

    Article  Google Scholar 

  81. Hinz B. The myofibroblast: paradigm for a mechanically active cell. J Biomech. 2010;43(1):146–55.

    Article  PubMed  Google Scholar 

  82. Schleip R, Klingler W, Lehmann-Horn F. Fascia is able to contract in a smooth muscle-like manner and thereby influence musculoskeletal mechanics. J Biomech. 2006;39:S488.

    Article  Google Scholar 

  83. Fishman SM, Ballantyne JC, Rathmell JP. Bonica’s management of pain. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2010. p. 1698.

    Google Scholar 

  84. Nowlan NC, Murphy P, Prendergast PJ. Mechanobiology of embryonic limb development. Ann N Y Acad Sci. 2007;1101(1):389–411.

    Article  PubMed  Google Scholar 

  85. Stecco C, Veronica M, Andrea P, Fabrice D, Raffaele DC. The fascia: the forgotten structure, vol. 116; 2011. p. 127–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Seyres or Philippe Seyres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seyres, M., Seyres, P. (2020). Connective Tissues of the Posterior Aspect of the Trunk. In: Vital, J., Cawley, D. (eds) Spinal Anatomy . Springer, Cham. https://doi.org/10.1007/978-3-030-20925-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20925-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20924-7

  • Online ISBN: 978-3-030-20925-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics