Skip to main content

l-Cysteine Metabolism Found in Saccharomyces cerevisiae and Ogataea parapolymorpha

  • Chapter
  • First Online:
Non-conventional Yeasts: from Basic Research to Application

Abstract

Sulfur’s cellular requirements can be met by the cell’s uptake of sulfur-containing amino acids. The requirements can also be fulfilled by the cell’s assimilation of inorganic sulfur into organic compounds, such as l-homocysteine (Hcy) and l-cysteine (Cys), which are used for the biosynthesis of l-methionine (Met) and l-glutathione (GSH), respectively. Cys can be synthesized via the sulfur assimilation pathway in microorganisms and plants, but not the corresponding pathway in animals. Saccharomyces cerevisiae, which is the conventional yeast, synthesizes Cys from Hcy via a reverse trans-sulfuration pathway. It has been concluded that Cys is synthesized exclusively by l-cystathionine β-synthase and l-cystathionine γ-lyase. A promising host strain for high-level production of GSH is the thermotolerant methylotrophic yeast Ogataea parapolymorpha (formerly Hansenula polymorpha). Domain analyses of the serine O-acetyltransferase (SAT) in the non-conventional yeast Ogataea parapolymorpha (OpSat1) and those of other fungal SATs have demonstrated that these proteins have a mitochondrial targeting sequence (MTS) at the N-terminus that differs markedly from the classical bacterial and plant SATs. OpSat1 is functionally interchangeable with the E. coli SAT, i.e., CysE, even though compared to CysE, OpSat1 has far lower enzymatic activity, with marginal feedback inhibition by Cys. In light of the key role of OpSat1 in the regulation of the pathway of Cys biosynthesis in O. parapolymorpha, and its crucial role in sulfur metabolism, it is apparent that OpSat1 could be a target for the metabolic engineering used to generate yeast strains that produce sulfur-containing metabolites such as GSH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S (2003) Effect of cysteine desulfhydrase gene disruption on l-cysteine overproduction in Escherichia coli. Appl Microbiol Biotechnol 62:239–243

    Article  CAS  PubMed  Google Scholar 

  • Awano N, Wada M, Mori H, Nakamori S, Takagi H (2005) Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl Environ Microbiol 71:4149–4152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdanova N, Hell R (1997) Cysteine synthesis in plants: protein-protein interactions of serine acetyltransferase from Arabidopsis thaliana. Plant J 11:251–262

    Article  CAS  PubMed  Google Scholar 

  • Brzywczy J, Sienko M, Kucharska A, Paszewski A (2002) Sulphur amino acid synthesis in Schizosaccharomyces pombe represents a specific variant of Sulphur metabolism in fungi. Yeast 19:29–35

    Article  CAS  PubMed  Google Scholar 

  • Cherest H, Surdin-Kerjan Y (1992) Genetic analysis of a new mutation conferring cysteine auxotrophy in Saccharomyces cerevisiae: updating of the sulfur metabolism pathway. Genetics 130:51–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cicchillo RM, Baker MA, Schnitzer EJ, Newman EB, Krebs C, Booker SJ (2004) Escherichia coli l -serine deaminase requires a [4Fe-4S] cluster in catalysis. J Biol Chem 279:32418–32425

    Article  CAS  PubMed  Google Scholar 

  • D’Andrea R, Surdin-Kerjan Y, Pure G, Cherest H (1987) Molecular genetics of met17 and met25 mutants of Saccharomyces cerevisiae: intragenic complementation between mutations of a single structural gene. Mol Gen Genet 207:165–170

    Article  PubMed  Google Scholar 

  • Daßler T, Maier T, Winterhalter C, Böck A (2000) Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Mol Microbiol 36:1101–1112

    Article  PubMed  Google Scholar 

  • Franke I, Resch A, Daßler T, Maier T, Böck A (2003) YfiK from Escherichia coli promotes export of O-acetylserine and cysteine. J Bacteriol 185:1161–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funahashi E, Saiki K, Honda K, Sugiura Y, Kawano Y, Ohtsu I, Watanabe D, Wakabayashi Y, Abe T, Nakanishi T, Suematsu M, Takagi H (2015) A finding of thiosulfate pathway for synthesis of organic sulfur compounds in Saccharomyces cerevisiae and an improvement of ethanol production. J Biosci Bioeng 120:666–669

    Article  CAS  PubMed  Google Scholar 

  • Grynberg M, Topczewski J, Godzik A, Paszewski A (2000) The Aspergillus nidulans cysA gene encodes a novel type of serine O-acetyltransferase which is homologous to homoserine O-acetyltransferases. Microbiology 146:2695–2703

    Article  CAS  PubMed  Google Scholar 

  • Haas FH, Heeg C, Queiroz R, Bauer A, Wirtz M, Hell R (2008) Mitochondrial serine acetyltransferase functions as a pacemaker of cysteine synthesis in plant cells. Plant Physiol 148:1055–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris CL (1981) Cystine and growth inhibition of Escherichia coli: threonine deaminase as the target enzyme. J Bacteriol 145:1031–1035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hébert A, Forquin-Gomez MP, Roux A, Aubert J, Junot C, Loux V, Heilier JF, Bonnarme P, Beckerich JM, Landaud S (2011) Exploration of sulfur metabolism in the yeast Kluyveromyces lactis. Appl Microbiol Biotechnol 91:1409–1423

    Article  PubMed  Google Scholar 

  • Hunt S (1985) Degradation of amino acids accompanying in vitro protein hydrolysis. In: Barrett GC (ed) Chemistry and biology of the amino acids. Chapman & Hall, London, pp 3763–3798

    Google Scholar 

  • Jacobson ES, Metzenberg RL (1977) Control of aryl sulfatase in a serine auxotroph of Neurospora. J Bacteriol 130:1397–1398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kai Y, Kashiwagi T, Ishikawa K, Ziyatdinov MK, Redkina EI, Kiriukhin MY, Gusyatiner MM, Kobayashi S, Takagi H, Suzuki E (2006) Engineering of Escherichia coli l-serine O-acetyltransferase on the basis of crystal structure: desensitization to feedback inhibition by l-cysteine. Protein Eng Des Sel 19:163–167

    Article  CAS  PubMed  Google Scholar 

  • Kang HA, Kang W, Hong WK, Kim MW, Kim JY, Sohn JH, Choi ES, Choe KB, Rhee SK (2001) Development of expression systems for the production of recombinant human serum albumin using the MOX promoter in Hansenula polymorpha DL-1. Biotechnol Bioeng 76:175–185

    Article  CAS  PubMed  Google Scholar 

  • Kaszycki P, Walski T, Hachicho N, Heipieper HJ (2013) Biostimulation by methanol enables the methylotrophic yeasts Hansenula polymorpha and Trichosporon sp. to reveal high formaldehyde biodegradation potential as well as to adapt to this toxic pollutant. Appl Microbiol Biotechnol 97:5555–5564

    Article  CAS  PubMed  Google Scholar 

  • Kitajima T, Jigami Y, Chiba Y (2012) Cytotoxic mechanism of selenomethionine in yeast. J Biol Chem 287:10032–10038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC, Curtiss RIII, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznicoff WS, Riley M, Schaechter M, Umbarger JE (eds) Escherichia coli and Salmonella typhimurium: cellular and molecular biology, 2nd edn. ASM, Washington, DC, pp 514–527

    Google Scholar 

  • Kredich NM, Tomkins GM (1966) The enzymatic synthesis of l-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem 241:4955–4965

    CAS  PubMed  Google Scholar 

  • Kurtzman CPA (2011) New methanol assimilating yeast, Ogataea parapolymorpha, the ascosporic state of Candida parapolymorpha. Antonie Van Leeuwenhoek 100:455–462

    Article  CAS  PubMed  Google Scholar 

  • Liszewska F, Blaszczyk A, Sirko A (2001) Modification of non-protein thiols contents in transgenic tobacco plants producing bacterial enzymes of cysteine biosynthesis pathway. Acta Biochim Pol 48:647–656

    CAS  PubMed  Google Scholar 

  • Marzluf GA (1997) Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol 51:73–96

    Article  CAS  PubMed  Google Scholar 

  • Nakamori S, Kobayashi S, Kobayashi C, Takagi H (1998) Overproduction of l-cysteine and l-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl Environ Microbiol 64:1607–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakatani T, Ohtsu I, Nonaka G, Wiriyathanawudhiwong N, Morigasaki S, Takagi H (2012) Enhancement of thioredoxin/glutaredoxin-mediated l-cysteine synthesis from S-sulfocysteine increases l-cysteine production in Escherichia coli. Microb Cell Factories 11:62. https://doi.org/10.1186/1475-2859-11-62

    Article  CAS  Google Scholar 

  • Nishino K, Yamaguchi A (2001) Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol 183:5803–5812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noji M, Inoue K, Kimura N, Gouda A, Saito K (1998) Isoform-dependent differences in feedback regulation and subcellular localization of serine acetyltransferase involved in cysteine biosynthesis from Arabidopsis thaliana. J Biol Chem 273:32739–32745

    Article  CAS  PubMed  Google Scholar 

  • Ohtsu I, Wiriyathanawudhiwong N, Morigasaki S, Nakatani T, Kadokura H, Takagi, H (2010) The l-cysteine/l-cystine shuttle system provides reducing equivalents to the periplasm in Escherichia coli. J Biol Chem 285: 17479–17487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtsu I, Kawano Y, Suzuki M, Morigasaki S, Saiki K, Yamazaki S, Nonaka G, Takagi H (2015) Uptake of l-cystine via an ABC transporter contributes defense of oxidative stress in the l-cysteine export-dependent manner in Escherichia coli. PLoS One 10(4):e0120619

    Article  PubMed  PubMed Central  Google Scholar 

  • Ono B, Suruga T, Yamamoto M, Yamamoto S, Murata K, Kimura A, Shinoda S, Ohmori S (1984) Cystathionine accumulation in Saccharomyces cerevisiae. J Bacteriol 158:860–865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ono B, Shirahige Y, Nanjoh A, Andoh N, Ohue H, Ishino-Arao Y (1988) Cysteine biosynthesis in Saccharomyces cerevisiae: mutation that confers cystathionine β-synthase deficiency. J Bacteriol 170:5883–5889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono B, Hazu T, Yoshida S, Kawato T, Shinoda S, Brzvwczy J, Paszewski A (1999) Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast 15:1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Park S, Imlay JA (2003) High levels of intracellular cysteine promote oxidative DNA damage by driving the Fenton reaction. J Bacteriol 185:1942–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paszewski A, Grabski J (1974) Regulation of S-amino acids biosynthesis in Aspergillus nidulans. Mol Gen Genet 132:307–320

    Article  CAS  PubMed  Google Scholar 

  • Penninckx MJ (2002) An overview on glutathione in Saccharomyces versus nonconventional yeasts. FEMS Yeast Res 2:295–305

    CAS  PubMed  Google Scholar 

  • Pittman MS, Corker H, Wu G, Binet MB, Moir AJG, Poole RK (2002) Cysteine is exported from the Escherichia coli cytoplasm by CydDC, an ATP-binding cassette-type transporter required for cytochrome assembly. J Biol Chem 277:49841–49849

    Article  CAS  PubMed  Google Scholar 

  • Soda K (1987) Microbial sulfur amino acids: an overview. In: Jakoby WB, Griffith OW (eds) Methods in enzymology, vol 143. Academic Press, Orlando, pp 453–459

    Google Scholar 

  • Sohn MJ, Yoo SJ, Oh DB, Kwon O, Lee SY, Sibirny AA, Kang HA (2014) Novel cysteine-centered sulfur metabolic pathway in the thermotolerant methylotrophic yeast Hansenula polymorpha. PLoS One 9:e100725

    Article  PubMed  PubMed Central  Google Scholar 

  • Sørensen MA, Pederson S (1991) Cysteine even in low concentrations, induces transient amino acid starvation in Escherichia coli. J Bacteriol 173:5244–5246

    Article  PubMed  PubMed Central  Google Scholar 

  • Sperandio B, Polard P, Ehrlich DS, Renault P, Guédon E (2005) Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. J Bacteriol 187:3762–3778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh SO, Zhou JJ (2010) Methylotrophic yeasts near Ogataea (Hansenula) polymorpha: a proposal of Ogataea angusta comb. nov. and Candida parapolymorpha sp. nov. FEMS Yeast Res 10:631–638

    CAS  PubMed  Google Scholar 

  • Takagi H, Ohtsu (2017) l-Cysteine metabolism and fermentation in microorganisms. In: Yokota A, Ikeda M (eds) Amino acid fermentation. Springer, New York, pp 129–152

    Chapter  Google Scholar 

  • Takagi H, Kobayashi C, Kobayashi S, Nakamori S (1999a) PCR random mutagenesis into Escherichia coli serine acetyltransferase: isolation of the mutant enzymes that cause overproduction of l-cysteine and l-cystine due to the desensitization to feedback inhibition. FEBS Lett 452:323–327

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Awano N, Kobayashi S, Noji M, Saito K, Nakamori S (1999b) Overproduction of l-cysteine and l-cystine by expression of genes for feedback inhibition-insensitive serine acetyltransferase from Arabidopsis thaliana in Escherichia coli. FEMS Microbiol Lett 179:453–459

    CAS  PubMed  Google Scholar 

  • Takagi H, Yoshioka K, Awano N, Nakamori S, Ono B (2003) Role of Saccharomyces cerevisiae serine O-acetyltransferase in cysteine biosynthesis. FEMS Microbiol Lett 218:291–297

    Article  CAS  PubMed  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas D, Barbey R, Henry D, Surdin-Kerjan Y (1992) Physiological analysis of mutants of Saccharomyces cerevisiae impaired in sulphate assimilation. J Gen Microbiol 138:2021–2028

    Article  CAS  PubMed  Google Scholar 

  • Vermeji P, Kertesz MA (1999) Pathways of assimilative sulfur metabolism in Pseudomonas putida. J Bacteriol 181:5833–5837

    Google Scholar 

  • Wada M, Takagi H (2006) Metabolic pathways and biotechnological production of l-cysteine. Appl Microbiol Biotechnol 73:48–54

    Article  CAS  PubMed  Google Scholar 

  • Wiriyathanawudhiwong N, Ohtsu I, Li ZD, Mori H, Takagi H (2009) The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Appl Microbiol Biotechnol 81:903–913

    Article  CAS  PubMed  Google Scholar 

  • Wirtz M, Hell R (2003) Production of cysteine for bacterial and plant biotechnology: application of cysteine feedback-insensitive isoforms of serine acetyltransferase. Amino Acids 24:195–203

    Article  CAS  PubMed  Google Scholar 

  • Yamada S, Awano N, Inubushi K, Maeda E, Nakamori S, Nishino K, Yamaguchi A, Takagi H (2006) Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli. Appl Environ Microbiol 72:4735–4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata S, Takeshima K, Naiki N (1974) Evidence for the identity of O-acetylserine sulfhydrylase with O-acetylhomoserine sulfhydrylase in yeast. J Biochem 75:1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Yeon JY, Yoo SJ, Takagi H, Kahn HA (2018) A novel mitochondrial serine O-acetyltransferase, OpSAT1, plays a critical role in sulfur metabolism in the thermotolerant methylotrophic yeast Ogataea parapolymorpha. Sci Rep 8:2377

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to our co-researchers Dr. Hyun Ah Kang, Ji Yoon Yeon, and Su Jin Yoo (Chung-Ang University, Seoul, Korea) and Dr. Bun-ichiro Ono (Ritsumeikan University, Japan). I am also grateful to Dr. Shigeru Nakamori (Fukui Prefectural University, Fukui, Japan) and Dr. Iwao Ohtsu (Nara Institute Science and Technology, Nara, Japan). This review includes the work supported by a grant from Ajinomoto, Co., Inc., to H.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takagi, H. (2019). l-Cysteine Metabolism Found in Saccharomyces cerevisiae and Ogataea parapolymorpha. In: Sibirny, A. (eds) Non-conventional Yeasts: from Basic Research to Application. Springer, Cham. https://doi.org/10.1007/978-3-030-21110-3_15

Download citation

Publish with us

Policies and ethics