Skip to main content

A Complete Direct Approach to Modeling of Electrostrictive Polymer Plates as Electro-elastic Material Surfaces

  • Chapter
  • First Online:
Contributions to Advanced Dynamics and Continuum Mechanics

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 114))

Abstract

In this paper we present a first account towards the modeling of electro-elastic plates as electro-elastic material surfaces. A complete direct approach is developed without the need to involve the three-dimensional formulation. In particular, we consider the case of electrostrictive polymer plates, in which ponderomotive forces as well as constitutive coupling by means of electrostriction are accounted for. We propose a rational formulation for the augmented free energy of electro-elastic material surfaces incorporating electrostriction by a multiplicative decomposition of the surface stretch tensor and an additive decomposition of the surface curvature tensor into elastic and electrical parts. Moreover, we show that concepts such as the total stress, the electrostatic stress and the mechanical stress exist also for electro-elastic material surfaces. Results computed within the framework of this complete direct approach are compared to results based on a numerical integration of the plane stress three-dimensional augmented free energy. A very good agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toupin, R.A.: The elastic dielectric. J. Ration. Mech. Anal. 5(6), 849–915 (1956)

    MathSciNet  MATH  Google Scholar 

  2. Pao, Y.H.: Electromagnetic forces in deformable continua. In: Nemat-Nasser, S. (ed.) Mechanics Today, vol. 4, pp. 209–306. Pergamon Press, Oxford (1978)

    Chapter  Google Scholar 

  3. Prechtl, A.: Eine Kontinuumstheorie elastischer Dielektrika. Teil 1: Grundgleichungen und allgemeine Materialbeziehungen (in German). Archiv für Elektrotechnik 65(3), 167–177 (1982)

    Article  MathSciNet  Google Scholar 

  4. Prechtl, A.: Eine Kontinuumstheorie elastischer Dielektrika. Teil 2: Elektroelastische und elastooptische Erscheinungen (in German). Archiv für Elektrotechnik 65(4), 185–194 (1982)

    Google Scholar 

  5. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  6. Gao, Z., Tuncer, A., Cuitiño, A.: Modeling and simulation of the coupled mechanical-electrical response of soft solids. Int. J. Plast. 27(10), 1459–1470 (2011)

    Article  Google Scholar 

  7. Pelrine, R.E., Kornbluh, R.D., Joseph, J.P.: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A Phys. 64, 77–85 (1998)

    Article  Google Scholar 

  8. Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges. SPIE, Bellingham, WA (2004)

    Google Scholar 

  9. Zäh, D., Miehe, C.: Multiplicative electro-elasticity of electroactive polymers accounting for micromechanically-based network models. Comput. Methods Appl. Mech. Eng. 286, 394–421 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dorfmann, A., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174, 167–183 (2005)

    Article  Google Scholar 

  11. Vu, D.K., Steinmann, P., Possart, G.: Numerical modelling of non-linear electroelasticity. Int. J. Numer. Methods Eng. 70, 685–704 (2007)

    Article  MathSciNet  Google Scholar 

  12. Skatulla, S., Sansour, C., Arockiarajan, A.: A multiplicative approach for nonlinear electro-elasticity. Comput. Methods Appl. Mech. Eng. 245–246, 243–255 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. Staudigl, E., Krommer, M., Humer, A.: Modeling of dielectric elastomers accounting for electrostriction by means of a multiplicative decomposition of the deformation gradient tensor. In: Altenbach, H., Carrera, E., Kulikov, G. (eds.) Analysis and Modelling of Advanced Structures and Smart Systems. Springer, Vienna (2018)

    Google Scholar 

  14. Humer, A., Krommer, M.: Modeling of piezoelectric materials by means of a multiplicative decomposition of the deformation gradient. Mech. Adv. Mater. Struct. 22, 125–135 (2015)

    Article  Google Scholar 

  15. Altenbach, H., Zhilin, P.A.: A general theory of elastic simple shells (in Russian). Uspekhi Mekhaniki 11, 107–148 (1998)

    Google Scholar 

  16. Opoka, S., Pietraszkiewicz, W.: On modified displacement version of the non-linear theory of thin shells. Int. J. Solids Struct. 46(17), 3103–3110 (2009)

    Article  Google Scholar 

  17. Eliseev, V.V., Vetyukov, Y.: Finite deformation of thin shells in the context of analytical mechanics of material surfaces. Acta Mechanica 209(1–2), 43–57 (2010)

    Article  Google Scholar 

  18. Vetyukov, Y.: Finite element modeling of Kirchhoff-Love shells as smooth material surfaces. ZAMM 94, 150–163 (2014a)

    Article  ADS  MathSciNet  Google Scholar 

  19. Altenbach, H., Eremeyev, V.: On the shell theory on the nanoscale with surface stresses. Int. J. Eng. Sci. 12(49), 1294–1301 (2011)

    Article  MathSciNet  Google Scholar 

  20. Vetyukov, Y., Staudigl, E., Krommer, M.: Hybrid asymptotic-direct approach to finite deformations of electromechanically coupled piezoelectric shells. Acta Mech. 229(2), 953–974 (2018)

    Article  MathSciNet  Google Scholar 

  21. Vetyukov, Y.: Nonlinear Mechanics of Thin-Walled Structures: Asymptotics. Direct Approach and Numerical Analysis. Springer, Vienna, NewYork (2014)

    Book  Google Scholar 

  22. Libai, A., Simmonds, J.G.: The Nonlinear Theory of Elastic Shells. Cambridge University Press (2005)

    Google Scholar 

  23. Klinkel, S., Zwecker, S., Mueller, R.: A solid shell finite element formulation for dielectric elastomers. J. Appl. Mech. 80, 021026-1–021026-11 (2013)

    Article  ADS  Google Scholar 

  24. Bishara, D., Jabareen, M.: An optimal solid-shell finite element for modeling dielectric elastomers. In: Proceedings of the 7th GACM Colloquium on Computational Mechanics for Young Scientists from Academia and Industry, 6 pp. (2017)

    Google Scholar 

  25. Staudigl, E., Krommer, M., Vetyukov, Y.: Finite deformations of thin plates made of dielectric elastomers: modeling, numerics and stability. J. Intell. Mater. Syst. Struct. 19 (2017) (published online October 2017)

    Google Scholar 

  26. Krommer, M., Staudigl-Hansy, E.: A complete direct approach to modeling of dielectric elastomer plates as material surfaces. In Metveenko, V., Krommer, M., Belyaev, A.K., Irschik, H. (eds.) Dynamics and Control of Advanced Structures and Machines: Contributions from the 3rd International Workshop, Perm, Russia. Springer Nature (2019)

    Chapter  Google Scholar 

  27. Naghdi, P.: The theory of shells and plates. In: Flügge, S., Truesdell, C. (eds.) Handbuch der Physik, vol. VIa/2, pp. 425–640. Springer, Berlin (1972)

    Chapter  Google Scholar 

  28. Altenbach, H., Eremeyev, V.A.: Cosserat-type shells. In: Altenbach, H., Eremeyev, V.A. (eds.) Generalized Continua from the Theory to Engineering Applications. CISM International Centre for Mechanical Sciences (Courses and Lectures), vol. 541. Springer, Vienna (2013)

    Chapter  Google Scholar 

  29. Diaconu, I., Dorohoi, D.O.: Properties of polyurethane thin films. J. Optoelectron. Adv. Mater. 7(2), 921–924 (2005)

    Google Scholar 

  30. Amabili, M.: Nonlinear Vibrations and Stability of Shells and Plates. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  31. Breslavsky, I.D., Amabili, M., Legrand, M.: Nonlinear vibrations of thin hyperelastic plates. J. Sound Vib. 333(19), 4668–4681 (2014)

    Article  ADS  Google Scholar 

  32. Koiter, W.T.: On the nonlinear theory of thin elastic shells. Proc. Koninklijke Ned. Akad. van Wet. B 69, 1–54 (1966)

    Google Scholar 

  33. Duong, T.X., Roohbakhshan, F., Sauer, R.A.: A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput. Methods Appl. Mech. Eng. 316, 43–83 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Krommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krommer, M., Hansy-Staudigl, E. (2019). A Complete Direct Approach to Modeling of Electrostrictive Polymer Plates as Electro-elastic Material Surfaces. In: Altenbach, H., Irschik, H., Matveenko, V. (eds) Contributions to Advanced Dynamics and Continuum Mechanics. Advanced Structured Materials, vol 114. Springer, Cham. https://doi.org/10.1007/978-3-030-21251-3_9

Download citation

Publish with us

Policies and ethics