Skip to main content

Interferometric Scattering (iSCAT) Microscopy and Related Techniques

  • Chapter
  • First Online:
Label-Free Super-Resolution Microscopy

Abstract

Interferometric scattering (iSCAT) microscopy is a powerful tool for label-free sensitive detection and imaging of nanoparticles to high spatiotemporal resolution. As it was born out of detection principles central to conventional microscopy, we begin by surveying the historical development of the microscope to examine how the exciting possibility for interferometric scattering microscopy with sensitivities sufficient to observe single molecules has become a reality. We discuss the theory of interferometric detection and also issues relevant to achieving a high detection sensitivity and speed. A showcase of numerous applications and avenues of novel research across various disciplines that iSCAT microscopy has opened up is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Fernández-Suárez, A.Y. Ting, Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 9(12), 929–943 (2008)

    Article  Google Scholar 

  2. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch. Mikrosk. Anat. 9(1), 413–418 (1873)

    Article  Google Scholar 

  3. J. Steinhardt, Intensity discrimination in the human eye: I. The relation of \({\Delta }\)I/I to intensity. J. Gen. Physiol. 20(2), 185–209 (1936)

    Google Scholar 

  4. L.C. Martin, B.K. Johnson, Practical Microscopy (Blackie & Son Limited, 1931)

    Google Scholar 

  5. J.J. Lister, On some properties in achromatic object-glasses applicable to the improvement of the microscope. Philos. Trans. R. Soc. Lond. 120, 187–200 (1830)

    Article  ADS  Google Scholar 

  6. S.H. Gage, Modern dark-field microscopy and the history of its development. Trans. Am. Microsc. Soc. 39(2), 95–141 (1920)

    Article  Google Scholar 

  7. H. Siedentopf, R. Zsigmondy, Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann. Phys. 315(1), 1–39 (1902)

    Article  Google Scholar 

  8. F. Zernike, Diffraction theory of the knife-edge test and its improved form, the phase-contrast method. Mon. Not. R. Astron. Soc. 94(5), 377–384 (1934)

    Article  ADS  Google Scholar 

  9. F. Zernike, The concept of degree of coherence and its application to optical problems. Physica 5(8), 785–795 (1938)

    Article  ADS  Google Scholar 

  10. F. Zernike, How I discovered phase contrast. Science 121(3141), 345–349 (1955)

    Article  ADS  Google Scholar 

  11. F. Zernike, Phase contrast, a new method for the microscopic observation of transparent objects part I. Physica 9(7), 686–698 (1942)

    Article  ADS  Google Scholar 

  12. F. Zernike, Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica 9(10), 974–986 (1942)

    Article  ADS  Google Scholar 

  13. G. Normarski, Dispositif Oculaire a Contraste De phase pour microscope. J. De Phys. Et Le Radiu. 11(12), 9–10 (1950)

    Google Scholar 

  14. J. Jamin, Neuer interferential-refractor. Ann. der Phys. und Chem. 174(6), 345–349 (1856)

    Article  ADS  Google Scholar 

  15. J.L. Sirks, Over een interferentiemicroscoop. Handelingen van het vierde Nederlandisch Natuuren. Geneskundig Congress 4, 92–98 (1893)

    Google Scholar 

  16. W.E. Kock, Nobel Prize for Physics: Gabor and Holography. Science 174(4010), 674–675 (1971)

    Google Scholar 

  17. G.W. Ellis, Holomicrography: transformation of image during reconstruction a posteriori. Science 154(3753), 1195–1197 (1966)

    Article  ADS  Google Scholar 

  18. W. Krug, J. Rienitz, G. Schulz, Contributions to Interference Microscopy (Hilger & Watts, 1964)

    Google Scholar 

  19. M. Shribak, in Handbook of Optics, vol. 1, ed. by M. Bass (McGraw-Hill, 2006)

    Google Scholar 

  20. G.A. Dunn, Quantitative interference microscopy, in New Techniques of Optical Microscopy and Microspectroscopy, ed. by R.J. Cherry (CRC Press, 1991)

    Google Scholar 

  21. P. de Groot, Principles of interference microscopy for the measurement of surface topography. Adv. Opt. Photonics 7(1), 1–65 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Renz, Fluorescence microscopy a historical and technical perspective. Cytom. Part A 83(9), 767–779 (2013)

    Article  Google Scholar 

  23. B.R. Masters, The development of fluorescence microscopy, in Encyclopedia of Life Sciences (ELS) (Wiley, 2010)

    Google Scholar 

  24. M. Minsky, Memoir on inventing the confocal scanning microscope. Scanning 10(4), 128–138 (1988)

    Article  MathSciNet  Google Scholar 

  25. A.S.G. Curtis, The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. Cell Biol. 20(2), 199–215 (1964)

    Article  Google Scholar 

  26. J.S. Ploem, Reflection-contrast microscopy as a tool for investigation of the attachment of living cells to a glass surface, in Mononuclear Phagocytes in Immunity, Infection and Pathology, ed. by R. van Furth (Blackwell Scientific, 1975)

    Google Scholar 

  27. M. Abercrombie, G.A. Dunn, Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp. Cell Res. 92(1), 57–62 (1975)

    Article  Google Scholar 

  28. C.S. Izzard, L.R. Lochner, Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J. Cell Sci. 21, 129–159 (1976)

    Google Scholar 

  29. J.P. Heath, G.A. Dunn, Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. J. Cell Sci. 29(1), 197–212 (1978)

    Google Scholar 

  30. J. Wehland, M. Osborn, K. Weber, Cell-to-substratum contacts in living cells: a direct correlation between interference-reflexion and indirect-immunofluorescence microscopy using antibodies against actin and alpha-actinin. J. Cell Sci. 37, 257–273 (1979)

    Google Scholar 

  31. M. Opas, V.I. Kalnins, Surface reflection interference microscopy: a new method for visualizing cytoskeletal components by light microscopy. J. Microsc. 133(3), 291–306 (1984)

    Article  Google Scholar 

  32. J. Bereiter-Hahn, C.H. Fox, B. Thorell, Quantitative reflection contrast microscopy of living cells. J. Cell Biol. 82(3), 767–779 (1979)

    Article  Google Scholar 

  33. A. Zilker, H. Engelhardt, E. Sackmann, Dynamic reflection interference contrast (RIC-) microscopy: a new method to study surface excitations of cells and to measure membrane bending elastic moduli. J. Phys. 48(12), 2139–2151 (1987)

    Article  Google Scholar 

  34. J. Rädler, E. Sackmann, Imaging optical thicknesses and separation distances of phospholipid vesicles at solid surfaces. J. Phys. II 3(5), 727–748 (1993)

    Google Scholar 

  35. G. Wiegand, K.R. Neumaier, E. Sackmann, Microinterferometry: three-dimensional reconstruction of surface microtopography for thin-film and wetting studies by reflection interference contrast microscopy (RICM). Appl. Opt. 37(29), 6892 (1998)

    Article  ADS  Google Scholar 

  36. J. Dvorak et al., Invasion of erythrocytes by malaria merozoites. Science 187(4178), 748–750 (1975)

    Article  ADS  Google Scholar 

  37. R.D. Allen, N.S. Allen, J.L. Travis, Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil. 1(3), 291–302 (1981)

    Article  Google Scholar 

  38. S. Inoué, Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy. J. Cell Biol. 89(2), 346–356 (1981)

    Article  Google Scholar 

  39. R.J. Walter, M.W. Berns, Computer-enhanced video microscopy: digitally processed microscope images can be produced in real time. Proc. Natl. Acad. Sci. U.S.A. 78(11), 6927–6931 (1981)

    Article  ADS  Google Scholar 

  40. R.D. Allen, N.S. Allen, Video-enhanced microscopy with a computer frame memory. J. Microsc. 129(1), 3–17 (1983)

    Article  Google Scholar 

  41. E.D. Salmon, P. Tran, High-resolution video-enhanced differential interference contrast light microscopy. Methods Cell Biol. 72, 289–318 (2003)

    Article  Google Scholar 

  42. S. Inoué, Video Microscopy (Springer, 1986)

    Google Scholar 

  43. S.T. Brady et al., Fast axonal transport in extruded axoplasm from squid giant axon. Science 218(4577), 1129–1131 (1982)

    Article  ADS  Google Scholar 

  44. R.D. Allen et al., New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Annu. Rev. Biophys. Chem. 14(1), 265–290 (1985)

    Article  MathSciNet  Google Scholar 

  45. B.J. Schnapp et al., Single microtubules from squid axoplasm support bidirectional movement of organelles. Cell 40(2), 455–462 (1985)

    Article  Google Scholar 

  46. D.G. Weiss, Visualization of the living cytoskeleton by video-enhanced microscopy and digital image processing. J. Cell Sci. Suppl. 5, 1–15 (1986)

    Article  Google Scholar 

  47. B. Herman, D.F. Albertini, A time-lapse video image intensification analysis of cytoplasmic organelle movements during endosome translocation. J. Cell Biol. 98(2), 565–576 (1984)

    Article  Google Scholar 

  48. M. De Brabander et al., Microtubule-dependent intracellular motility investigated with nanometer particle video ultramicroscopy (nanovid ultramicroscopy). Ann. N. Y. Acad. Sci. 466, 666–668 (1986)

    Article  ADS  Google Scholar 

  49. H. Geerts et al., Nanovid tracking: a new automatic method for the study of mobility in living cells based on colloidal gold and video microscopy. Biophys. J. 52(5), 775–782 (1987)

    Article  ADS  Google Scholar 

  50. B.J. Schnapp, J. Gelles, M.P. Sheetz, Nanometer-scale measurements using video light microscopy. Cell Motil. Cytoskelet. 10, 47–53 (1988)

    Article  Google Scholar 

  51. M. De Brabander et al., Dynamic behavior of the transferrin receptor followed in living epidermoid carcinoma (A431) cells with nanovid microscopy. Cell Motil. Cytoskelet. 9(1), 30–47 (1988)

    Article  Google Scholar 

  52. M.P. Sheetz et al., Nanometre-level analysis demonstrates that lipid flow does not drive membrane glycoprotein movements. Nature 340(6231), 284–288 (1989)

    Article  ADS  Google Scholar 

  53. H. Geerts, M. De Brabander, R. Nuydens, Nanovid microscopy. Nature 351(6231), 765–766 (1991)

    Article  ADS  Google Scholar 

  54. A. Kusumi et al., Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34(1), 351–378 (2005)

    Article  Google Scholar 

  55. A. Kusumi et al., Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of singer and nicolson’s fluid-mosaic model. Annu. Rev. Cell Dev. Biol. 28(1), 215–250 (2012)

    Article  Google Scholar 

  56. D.R. Pettit, T.W. Peterson, Coherent detection of scattered light from submicron aerosols. Aerosol Sci. Technol. 2(3), 351–368 (1982)

    Article  ADS  Google Scholar 

  57. J.S. Batchelder, M.A. Taubenblatt, Interferometric detection of forward scattered light from small particles. Appl. Phys. Lett. 55(3), 215–217 (1989)

    Article  ADS  Google Scholar 

  58. D.W. Pohl, W. Denk, M. Lanz, Optical stethoscopy: Image recording with resolution \(\lambda \)/20. Appl. Phys. Lett. 44(7), 651–653 (1984)

    Article  ADS  Google Scholar 

  59. G. Binnig, C.F. Quate, Ch. Gerber, Atomic Force Microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    Article  ADS  Google Scholar 

  60. W.E. Moerner, L. Kador, Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62(21), 2535–2538 (1989)

    Article  ADS  Google Scholar 

  61. R.P. Feynman, There’s plenty of room at the bottom. Eng. Sci. 23(5), 22–36 (1960)

    Google Scholar 

  62. F. Zenhausern, M.P. O’Boyle, H.K. Wickramasinghe, Apertureless near-field optical microscope. Appl. Phys. Lett. 65(13), 1623–1625 (1994)

    Article  ADS  Google Scholar 

  63. V. Sandoghdar et al., Reflection scanning near-field optical microscopy with uncoated fiber tips: How good is the resolution really? J. Appl. Phys. 81(6), 2499–2503 (1997)

    Article  ADS  Google Scholar 

  64. R. Hillenbrand, B. Knoll, F. Keilmann, Pure optical contrast in scattering-type scanning near-field microscopy. J. Microsc. 202(1), 77–83 (2001)

    Article  MathSciNet  Google Scholar 

  65. T. Taubner, R. Hillenbrand, F. Keilmann, Performance of visible and mid-infrared scattering-type near-field optical microscopes. J. Microsc. 210(3), 311–314 (2003)

    Article  MathSciNet  Google Scholar 

  66. I. Amenabar et al., Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 4, 1–9 (2013)

    Article  Google Scholar 

  67. T. Klar et al., Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 80(19), 4249–4252 (1998)

    Article  ADS  Google Scholar 

  68. S. Schultz, D.R. Smith, J.J. Mock, D.A. Schultz, Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl. Acad. Sci. U.S.A. 97(3), 996–1001 (2000)

    Article  ADS  Google Scholar 

  69. C. Sönnichsen et al., Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl. Phys. Lett. 77(19), 2949–2951 (2000)

    Article  ADS  Google Scholar 

  70. M.Y. Sfeir et al., Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 306(5701), 1540–1543 (2004)

    Article  ADS  Google Scholar 

  71. D. Boyer et al., Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297(5584), 1160–1163 (2002)

    Article  ADS  Google Scholar 

  72. S. Berciaud et al., Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. Phys. Rev. Lett. 93(25), 2–5 (2004)

    Article  Google Scholar 

  73. K. Lindfors et al., Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93(3), 037401 (2004)

    Article  ADS  Google Scholar 

  74. A. Arbouet et al., Direct measurement of the single-metal-cluster optical absorption. Phys. Rev. Lett. 93(12), 127401 (2004)

    Article  ADS  Google Scholar 

  75. S. Simmert et al., LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging. Opt. Express 26(11), 14499 (2018)

    Article  ADS  Google Scholar 

  76. M. Mahamdeh et al., Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy. J. Microsc. 272(1), 60–66 (2018)

    Article  Google Scholar 

  77. G.G. Daaboul et al., High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification. Nano Lett. 10(11), 4727–4731 (2010)

    Article  ADS  Google Scholar 

  78. O. Avci et al., Interferometric Reflectance Imaging Sensor (IRIS)–A Platform Technology for Multiplexed Diagnostics and Digital Detection. Sensors 15(7), 17649–17665 (2015)

    Article  Google Scholar 

  79. A. Yurt et al., High-throughput size determination of nearly spherical gold nanoparticles, in 2011 XXXth URSI General Assembly and Scientific Symposium, vol. 1 (2011), pp. 1–4

    Google Scholar 

  80. A. Matlock et al., Differential Phase Contrast and Digital Refocusing in a Computational Reflection Interferometric Microscope for Nanoparticle Imaging CTh4B.2 (2017)

    Google Scholar 

  81. S.M. Scherr et al., Real-time capture and visualization of individual viruses in complex media. ACS Nano 10(2), 2827–2833 (2016)

    Article  Google Scholar 

  82. G.G. Daaboul et al., Digital detection of exosomes by interferometric imaging. Sci. Rep. 6, 1–10 (2016)

    Article  Google Scholar 

  83. G.G. Daaboul et al., Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebola viruses. PLoS ONE 12(6), 1–15 (2017)

    Article  Google Scholar 

  84. D. Sevenler, O. Avci, M.S. Ünlü, Quantitative interferometric reflectance imaging for the detection and measurement of biological nanoparticles. Biomed. Opt. Express 8(6), 2976 (2017)

    Article  Google Scholar 

  85. D. Sevenler et al., Digital microarrays: single-molecule readout with interferometric detection of plasmonic nanorod labels. ACS Nano 12(6), 5880–5887 (2018)

    Article  Google Scholar 

  86. S. Wang et al., Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc. Natl. Acad. Sci. U.S.A. 107(37), 16028–16032 (2010)

    Article  ADS  Google Scholar 

  87. H. Yu et al., Plasmonic imaging and detection of single DNA molecules. ACS Nano 8(4), 3427–3433 (2014)

    Article  Google Scholar 

  88. Y. Yang et al., Interferometric plasmonic imaging and detection of single exosomes. Proc. Natl. Acad. Sci. U.S.A. 115(41), 10275–10280 (2018)

    Article  Google Scholar 

  89. X. Shan et al., Imaging the electrocatalytic activity of single nanoparticles. Nat. Nanotechnol. 7(10), 668–672 (2012)

    Article  ADS  Google Scholar 

  90. M.D. Koch, A. Rohrbach, Label-free imaging and bending analysis of microtubules by ROCS microscopy and optical trapping. Biophys. J. 114(1), 168–177 (2018)

    Article  ADS  Google Scholar 

  91. M.E. Kandel et al., Label-free imaging of single microtubule dynamics using spatial light interference microscopy. ACS Nano 11(1), 647–655 (2017)

    Article  Google Scholar 

  92. J. Schilling et al., Absolute interfacial distance measurements by dual-wavelength reflection interference contrast microscopy. Phys. Rev. E. 69(2), 1–9 (2004)

    Article  Google Scholar 

  93. L. Limozin, K. Sengupta, Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. ChemPhysChem 10(16), 2752–2768 (2009)

    Article  Google Scholar 

  94. T. Matsuzaki et al., High contrast visualization of cell-hydrogel contact by advanced interferometric optical microscopy. J. Phys. Chem. Lett. 5(1), 253–257 (2014)

    Article  MathSciNet  Google Scholar 

  95. T. Matsuzaki et al., Quantitative evaluation of cancer cell adhesion to self-assembled monolayer-patterned substrates by reflection interference contrast microscopy. J. Phys. Chem. B. 120(7), 1221–1227 (2016)

    Article  Google Scholar 

  96. P. Dillard et al., Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization. Interg. Biol. 8(3), 287–301 (2016)

    Article  Google Scholar 

  97. M.J. Dejardin et al., Lamellipod reconstruction by three-dimensional reflection interference contrast nanoscopy (3D-RICN). Nano Lett. 18(10), 6544–6550 (2016)

    Article  ADS  Google Scholar 

  98. F. Jünger, P.V. Olshausen, A. Rohrbach, Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy. Sci. Rep. 6, 1–11 (2016)

    Article  Google Scholar 

  99. F. Jünger, A. Rohrbach, Strong cytoskeleton activity on millisecond timescales upon particle binding revealed by ROCS microscopy. Cytoskeleton 75(9), (2018)

    Article  Google Scholar 

  100. J.C. Contreras-Naranjo, V.M. Ugaz, A nanometre-scale resolution interference-based probe of interfacial phenomena between microscopic objects and surfaces. Nat. Commun. 4(1), 1919 (2013)

    Article  ADS  Google Scholar 

  101. L.D. Chiu et al., Use of a white light supercontinuum laser for confocal interference-reflection microscopy. J. Microsc. 246(2), 153–159 (2012)

    Article  MathSciNet  Google Scholar 

  102. B. Redding et al., Full-field interferometric confocal microscopy using a VCSEL array. Opt. Lett. 39(15), 4446 (2014)

    Article  ADS  Google Scholar 

  103. I. Sencan et al., Ultrahigh-speed, phase-sensitive full-field interferometric confocal microscopy for quantitative microscale physiology. Biomed. Opt. Express 7(11), 4674 (2016)

    Article  Google Scholar 

  104. A.J. Schain, R.A. Hill, J. Grutzendler, Label-free in vivo imaging of myelinated axons in health and disease with spectral confocal reflectance microscopy. Nat. Med. 20(4), 443–449 (2014)

    Article  Google Scholar 

  105. T.H. Nguyen et al., Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8(1) (2017)

    Google Scholar 

  106. Y.F. Huang et al., Coherent brightfield microscopy provides the spatiotemporal resolution to study early stage viral infection in live cells. ACS Nano 11(3), 2575–2585 (2017)

    Article  Google Scholar 

  107. M. Delor et al., Imaging material functionality through 3D nanoscale tracking of energy flow.arXiv:1805.09982v3 (2019)

  108. G. Young et al., Quantitative mass imaging of single biological macromolecules. Science 360(6387), 423–427 (2018)

    Article  ADS  Google Scholar 

  109. A.E. Siegman, Lasers (University Science Books, 1986)

    Google Scholar 

  110. X. Pang, T.D. Visser, E. Wolf, Phase anomaly and phase singularities of the field in the focal region of high-numerical aperture systems. Opt. Commun. 284(24), 5517–5522 (2011)

    Article  ADS  Google Scholar 

  111. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998)

    Google Scholar 

  112. H.A. Haus, Electromagnetic Noise and Quantum Optical Measurements (Springer, 2000)

    Google Scholar 

  113. V. Jacobsen et al., Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Opt. Express 14(1), 405–14 (2006)

    Article  ADS  Google Scholar 

  114. P. Kukura et al., Imaging a single quantum dot when it is dark. Nano Lett. 9(3), 926–929 (2009)

    Article  ADS  Google Scholar 

  115. H. Ewers et al., Label-free optical detection and tracking of single virions bound to their receptors in supported membrane bilayers. Nano Lett. 7(8), 2263–2266 (2007)

    Article  ADS  Google Scholar 

  116. P. Kukura et al., High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6(12), 923–927 (2009)

    Article  Google Scholar 

  117. M. Krishnan et al., Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467(7316), 692–695 (2010)

    Article  ADS  Google Scholar 

  118. S. Spindler et al., Visualization of lipids and proteins at high spatial and temporal resolution via interferometric scattering (iSCAT) microscopy. J. Phys. D: Appl. Phys. 49(27), 274002 (2016)

    Article  ADS  Google Scholar 

  119. M. Piliarik, V. Sandoghdar, Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5, 1–8 (2014)

    Article  Google Scholar 

  120. J.O. Arroyo et al., Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14(4), 2065–2070 (2014)

    Article  ADS  Google Scholar 

  121. J.O. Arroyo, P. Kukura, Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy. Nat. Photonics 10(1), 11–17 (2016)

    Article  ADS  Google Scholar 

  122. J. Andrecka et al., Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy. ACS Nano 7(12), 10662–10670 (2013)

    Article  Google Scholar 

  123. G. de Wit et al., Dynamic label-free imaging of lipid nanodomains. Proc. Natl. Acad. Sci. U.S.A. 112(40), 12299–12303 (2015)

    Article  ADS  Google Scholar 

  124. R. Loudon, The Quantum Theory of Light (Oxford University Press, 2000)

    Google Scholar 

  125. G. Zumofen et al., Perfect reflection of light by an oscillating dipole. Phys. Rev. Lett. 101(18), 180404 (2008)

    Google Scholar 

  126. K.G. Lee et al., A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat. Photonics 5(3), 166–169 (2011)

    Article  ADS  Google Scholar 

  127. W. Lukosz, Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation. J. Opt. Soc. Am. 69(11), 1495–1503 (1979)

    Article  ADS  Google Scholar 

  128. M. Liebel et al., Ultrasensitive label-free nanosensing and high-speed tracking of single proteins. Nano Lett. 17(2), 1277–1281 (2017)

    Article  ADS  Google Scholar 

  129. D. Cole et al., Label-free single-molecule imaging with numerical-aperture-shaped interferometric scattering microscopy. ACS Photonics 4(2), 211–216 (2017)

    Article  MathSciNet  Google Scholar 

  130. O. Avci et al., Pupil function engineering for enhanced nanoparticle visibility in wide-field interferometric microscopy. Optica 4(2), 247–254 (2017)

    Article  Google Scholar 

  131. S. Faez et al., Coherent interaction of light and single molecules in a dielectric nanoguide. Phys. Rev. Lett. 113(21), 213601 (2014)

    Article  ADS  Google Scholar 

  132. S. Faez, Y. Lahini, S. Weidlich, R.F. Garmann, Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber. ACS Nano 9(12), 12349–12357 (2015)

    Article  Google Scholar 

  133. M. Celebrano et al., Single-molecule imaging by optical absorption. Nat. Photonics 5(2), 95–98 (2011)

    Article  ADS  Google Scholar 

  134. A. Gemeinhardt et al., Label-free imaging of single proteins secreted from living cells via iSCAT microscopy. J. Vis. Exp. (141), e58486 (2018)

    Google Scholar 

  135. G. Wrigge et al., Exploring the limits of single emitter detection in fluorescence and extinction. Opt. Express 16(22), 17358 (2008)

    Article  ADS  Google Scholar 

  136. C.L. Hsieh et al., Tracking single particles on supported lipid membranes: multimobility diffusion and nanoscopic confinement. J. Phys. Chem. B. 118(6), 1545–1554 (2014)

    Article  Google Scholar 

  137. C.Y. Cheng, C.L. Hsieh, Background estimation and correction for high-precision localization microscopy. ACS Photonics 4(7), 1730–1739 (2017)

    Article  Google Scholar 

  138. R.W. Taylor et al., Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photonics 13, 480–487 (2019)

    Article  ADS  Google Scholar 

  139. A. Weigel, A. Sebesta, P. Kukura, Dark field microspectroscopy with single molecule fluorescence sensitivity. ACS Photonics 1(9), 848–856 (2014)

    Article  Google Scholar 

  140. H. Deschout et al., Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11(3), 253–266 (2014)

    Article  Google Scholar 

  141. O. Avci et al., Physical modeling of interference enhanced imaging and characterization of single nanoparticles. Opt. Express 24(6), 6094 (2016)

    Article  ADS  Google Scholar 

  142. R. Gholami Mahmoodabadi et al. Fast and precise 3D tracking of nanoparticles in interferometric scattering microscopy, In preparation

    Google Scholar 

  143. P. Kukura et al., Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1(23), 3323–3327 (2010)

    Article  Google Scholar 

  144. J.T. Trueb et al., Robust visualization and discrimination of nanoparticles by interferometric imaging. IEEE J. Sel. Top. Quantum Electron 23(2), 394–403 (2017)

    Article  ADS  Google Scholar 

  145. K. Holanová, M. Vala, M. Piliarik, Optical imaging and localization of prospective scattering labels smaller than a single protein. Opt. Laser Technol. 109, 323–327 (2019)

    Article  ADS  Google Scholar 

  146. T. Kalkbrenner et al., A single gold particle as a probe for apertureless scanning near-field optical microscopy. J. Microsc. 202(1), 72–76 (2001)

    Article  MathSciNet  Google Scholar 

  147. L. Zhang et al., Interferometric detection of single gold nanoparticles calibrated against TEM size distributions. Small 11(29), 3550–3555 (2015)

    Article  Google Scholar 

  148. I.B. Lee et al., Interferometric scattering microscopy with polarization-selective dual detection scheme: capturing the orientational information of anisotropic nanometric objects. ACS Photonics 5(3), 797–804 (2018)

    Article  Google Scholar 

  149. P. Stoller, V. Jacobsen, V. Sandoghdar, Measurement of the complex dielectric constant of a single gold nanoparticle. Opt. Lett. 31(16), 2474 (2006)

    Article  ADS  Google Scholar 

  150. J.T. Kim, S. Spindler, V. Sandoghdar, Scanning-aperture trapping and manipulation of single charged nanoparticles. Nat. Commun. 5(1), 3380 (2014)

    Article  ADS  Google Scholar 

  151. S. Fringes, M. Skaug, A.W. Knoll, In situ contrast calibration to determine the height of individual diffusing nanoparticles in a tunable confinement. J. Appl. Phys. 119(2), 024303 (2016)

    Google Scholar 

  152. Y. Tuna et al., Levitated plasmonic nanoantennas in an aqueous environment. ACS Nano 11(8), 7674–7678 (2017)

    Article  Google Scholar 

  153. R. Rigler, M. Orrit, T. Basche (eds.), Single Molecule Spectroscopy (Springer, Berlin, Heidelberg, 2001)

    Google Scholar 

  154. J. Hwang, M.M. Fejer, W.E. Moerner, Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter. Phys. Rev. A 73(2), 021802 (2006)

    Google Scholar 

  155. A. Gaiduk et al., Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 330(6002), 353–356 (2010)

    Article  ADS  Google Scholar 

  156. S. Chong, W. Min, X. Sunney Xie, Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1(23), 3316–3322 (2010)

    Article  Google Scholar 

  157. C.M. Robinson, J.K. Pfeiffer, Viruses and the microbiota. Annu. Rev. Virol. 1(1), 55–69 (2014)

    Article  Google Scholar 

  158. M. Mietzsch, M. Agbandje-McKenna, The good that viruses do. Ann. Rev. Virol. 4(1), iii–v (2017)

    Article  Google Scholar 

  159. R. Milo, R. Phillips, Cell Biology by the Numbers (Taylor & Francis Ltd., 2015)

    Google Scholar 

  160. F.V. Ignatovich, L. Novotny, Real-time and background-free detection of nanoscale particles. Phys. Rev. Lett. 96(1), 013901 (2006)

    Google Scholar 

  161. A. Mitra et al., Nano-optofluidic detection of single viruses and nanoparticles. ACS Nano 4(3), 1305–1312 (2010)

    Article  MathSciNet  Google Scholar 

  162. A.M. Goldfain et al., Dynamic measurements of the position, orientation, and DNA content of individual unlabeled bacteriophages. J. Phys. Chem. B 120(26), 6130–6138 (2016)

    Article  Google Scholar 

  163. S. Faez et al., Fast, label-free tracking of single viruses and weakly scattering nanoparticles in a nanofluidic optical fiber. ACS Nano 9(12), 12349–12357 (2015)

    Article  Google Scholar 

  164. M.P. McDonald et al., Visualizing single-cell secretion dynamics with single-protein sensitivity. Nano Lett. 18(1), 513–519 (2018)

    Article  ADS  Google Scholar 

  165. P. Zijlstra, P.M.R. Paulo, M. Orrit, Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 7(6), 379–382 (2012)

    Article  ADS  Google Scholar 

  166. F. Vollmer, S. Arnold, Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5(7), 591–596 (2008)

    Article  Google Scholar 

  167. K.J. Mickolajczyk et al., Direct observation of individual tubulin dimers binding to growing microtubules. Proc. Natl. Acad. Sci. U.S.A. 116(15), 7314–7322 (2019)

    Article  Google Scholar 

  168. J. Andrecka et al., Label-free imaging of microtubules with sub-nm precision using interferometric scattering microscopy. Biophys. J. 110(1), 214–217 (2016)

    Article  ADS  Google Scholar 

  169. R.F. Garmann, A.M. Goldfain, V.N. Manoharan, Measurements of the self-assembly kinetics of individual viral capsids around their RNA genome. bioRxiv 265330 (2018)

    Google Scholar 

  170. L. Talà et al., Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements. Nat. Microbiol. 4, 774–780 (2019)

    Article  Google Scholar 

  171. J.R. Heath, A. Ribas, P.S. Mischel, Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov. 15(3), 204–216 (2016)

    Article  Google Scholar 

  172. J. Andrecka et al., Structural dynamics of myosin 5 during processive motion revealed by interferometric scattering microscopy. eLife 4, e05413 (2015)

    Google Scholar 

  173. K.M. Spillane et al., High-speed single-particle tracking of GM1 in model membranes reveals anomalous diffusion due to interleaflet coupling and molecular pinning. Nano Lett. 14(9), 5390–5397 (2014)

    Article  ADS  Google Scholar 

  174. H.-M. Wu, Y.-H. Lin, T.-C. Yen, C.-L. Hsieh, Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci. Rep. 6(1), 20542 (2016)

    Article  ADS  Google Scholar 

  175. P.J. Slator, N.J. Burroughs, A hidden Markov model for detecting confinement in single-particle tracking trajectories. Biophys. J. 115(9), 1741–1754 (2018)

    Article  ADS  Google Scholar 

  176. F. Reina et al., Complementary studies of lipid membrane dynamics using iSCAT and super-resolved fluorescence correlation spectroscopy. J. Phys. D: Appl. Phys. 51(23), 235401 (2018)

    Article  ADS  Google Scholar 

  177. Y.-H. Lin, W.-L. Chang, C.-L. Hsieh, Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds. Opt. Express 22(8), 9159–9170 (2014)

    Article  ADS  Google Scholar 

  178. S. Spindler et al., High-speed microscopy of diffusion in pore-spanning lipid membranes. Nano Lett. 18(8), 5262–5271 (2018)

    Article  ADS  Google Scholar 

  179. H. Stein et al., Production of isolated giant unilamellar vesicles under high salt concentrations. Front. Physiol. 8, 1–16 (2017)

    Article  ADS  Google Scholar 

  180. P.L. Luisi, P. Walde, Giant Vesicles (Wiley, 2000)

    Google Scholar 

  181. J. Bernardino de la Serna et al., There is no simple model of the plasma membrane organization. Front. Cell Dev. Biol. 4(106), 1–17 (2016)

    Google Scholar 

  182. E. Sezgin et al., The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 18(6), 361–374 (2017)

    Article  Google Scholar 

  183. G. de Wit et al., Revealing compartmentalized diffusion in living cells with interferometric scattering microscopy. Biophys. J. 114(12), 2945–2950 (2018)

    Article  Google Scholar 

  184. B. Gutiérrez-Medina, S. M. Block, Visualizing individual microtubules by bright field microscopy. Am. J. Phys. 78(11), 1152–1159 (2010)

    Article  ADS  Google Scholar 

  185. D. Köster et al., Visualizing acto-myosin dynamics and vortices at a membrane surface using interferometric scattering microscopy. bioRxiv 199778v3 (2018)

    Google Scholar 

  186. Y.-F. Huang et al., Label-free, ultrahigh-speed, 3D observation of bidirectional and correlated intracellular cargo transport by coherent brightfield microscopy. Nanoscale 9(19), 6567–6574 (2017)

    Article  Google Scholar 

  187. W. Choi et al., Tomographic phase microscopy. Nat. Methods 4(9), 717–719 (2007)

    Article  Google Scholar 

  188. Z. Yaqoob et al., Single-shot full-field reflection phase microscopy. Opt. Express 19(8), 7587 (2011)

    Article  ADS  Google Scholar 

  189. K. Klein et al., Cell membrane topology analysis by RICM enables marker-free adhesion strength quantification. Biointerphases 8(1), 1–13 (2013)

    Article  Google Scholar 

  190. J.-S. Park et al., Label-free and live cell imaging by interferometric scattering microscopy. Chem. Sci. 9, 2690–2697 (2018)

    Article  Google Scholar 

  191. G. Popescu et al., Optical measurement of cell membrane tension. Phys. Rev. Lett. 97(21), 1–4 (2006)

    Article  Google Scholar 

  192. G. Popescu et al., Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. J. Biomed. Opt. 10(6), 060503 (2005)

    Article  ADS  Google Scholar 

  193. C. Monzel, K. Sengupta, Measuring shape fluctuations in biological membranes. J. Phys. D: Appl. Phys. 49(24), 243002–6 (2016)

    Article  ADS  Google Scholar 

  194. A. Biswas, A. Alex, B. Sinha, Mapping cell membrane fluctuations reveals their active regulation and transient heterogeneities. Biophys. J. 113(8), 1768–1781 (2017)

    Article  ADS  Google Scholar 

  195. H. Yu et al., Tracking fast cellular membrane dynamics with sub-nm accuracy in the normal direction. Nanoscale 10(11), 5133–5139 (2018)

    Article  Google Scholar 

  196. Y. Yang et al., Imaging action potential in single mammalian neurons by tracking the accompanying sub-nanometer mechanical motion. ACS Nano 12(5), 4186–4193 (2018)

    Article  Google Scholar 

  197. A. Kusumi, Y. Sako, M. Yamamoto, Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65(5), 2021–2040 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to a large number of fantastic group members, former and present, who have contributed to the advances of iSCAT in our laboratories. We also thank the Alexander von Humboldt Foundation for their generous support in the context of a Humboldt Professorship (VS) and Postdoctoral Fellowship (RWT) as well the Max Planck Society for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Sandoghdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taylor, R.W., Sandoghdar, V. (2019). Interferometric Scattering (iSCAT) Microscopy and Related Techniques. In: Astratov, V. (eds) Label-Free Super-Resolution Microscopy. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-21722-8_2

Download citation

Publish with us

Policies and ethics