Skip to main content

Source-to-Sink Analysis of the Plio-Pleistocene Deposits in the Suez Rift (Egypt)

  • Chapter
  • First Online:
Arabian Plate and Surroundings: Geology, Sedimentary Basins and Georesources

Part of the book series: Regional Geology Reviews ((RGR))

Abstract

We present a source-to-sink (S2S) study of the Plio-Pleistocene deposits in the Suez rift (Egypt). We used stratigraphic record and quantitative geomorphology to constrain relief evolution in a rift setting from a high-resolution database at basin-scale (~300 km × 100 km) including, digital elevation model, outcrop and subsurface data. The stratigraphic architecture shows five main stages ranging from rift initiation to tectonic quiescence (Oligo-Miocene) plus a post-rift stage (Plio-Pleistocene). We quantified sediment accumulation history and analysed the relationship between catchment and sediment supply for the Plio-Pleistocene (post-rift stage). The results of the source-to-sink study for the post-rift stage were then compared to previous estimations for the main rifting stages. We show that the sediment supply dynamics of the Plio-Pleistocene deposits of the Suez rift records a renewed uplift ca. 5 Myr ago. However, we also show that a major climate shift related to the Pliocene revolution was most probably coeval to reach the magnitude of accumulation observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El Shafy A (1990) Miocene-Pliocene boundary in the Gulf of Suez region, Egypt, vol 1. In: 10th EGPC Exploration Seminar, Cairo, Egypt, pp 213–233

    Google Scholar 

  • Abdel Salam H, El-Tablawy M (1970) Pliocene diatom assemblage from EastBakr and EastGharib exploratory wells in Gulf of Suez, vol 57, issue no (B-3). Seventh Arab Petroleum Congress, Kuwait

    Google Scholar 

  • Ali DM, El-Awamri AA, Badawi AA, Hamed AF (2010) Fossil diatoms in Zaafarana Formation, Gulf of Suez, Egypt. Int J Acad Res 2(6):91–100 (Part I)

    Google Scholar 

  • Allen PA (2008) From landscapes into geological history. Nature 451:274–276

    Article  Google Scholar 

  • Alsharhan AS, Salah MG (1995) Geology and hydrocarbon habitat in rift setting: northern and central Gulf of Suez, Egypt. Bull Can Petrol Geol 43(2):156–176

    Google Scholar 

  • Alsharhan AS, Salah MG (1998) Sedimentological aspects and hydrocarbon potential of the Quaternary in the Gulf of Suez rifted basin. In: Alsharhan AS, Glennie KW, Whittle GL, St. Kendall CG (eds) Quaternary deserts and climate changes: Rotterdam, Balkema, pp 531–538

    Google Scholar 

  • Attal M (2009) Rivers split as mountains grow. Nat Geosci 2:747–748. https://doi.org/10.1038/ngeo675

    Article  Google Scholar 

  • Babault J, van den Driessche J, Bonnet S, Castelltort S, Crave A (2005) Origin of the highly elevated Pyrenean peneplain. Tectonics 24. https://doi.org/10.1029/2004tc001697

    Article  Google Scholar 

  • Barnes JB, Heins WA (2009) Plio-quaternary sediment budget between thrust belt erosion and foreland deposition in the central Andes, southern Bolivia. Basin Res 21:91–109. https://doi.org/10.1111/j.1365-2117.2008.00372.x

    Article  Google Scholar 

  • Barrois A (2011) Couplage d’un modèle structural 3D restauré (Kiné3D-3) avec un modèle de remplissage stratigraphique (Dionisos) en contexte extensif, cas du rift de Suez (Égypte). I.F.P. report 62044

    Google Scholar 

  • Barrois A, Rohais S, Granjeon D, Rudkiewicz JL, Cacas MC (2010) Coupling 3D structural restoration with stratigraphic modelling in rifted margins, Suez Rift, Egypt. In: International conference “Modelling sedimentary basins and their petroleum systems”, June 3–4th 2010, Geological Society of London

    Google Scholar 

  • Bishop P (1995) Drainage rearrangement by river capture, beheading and diversion. Prog Phys Geogr 19:449–473. https://doi.org/10.1177/030913339501900402

    Article  Google Scholar 

  • Bonnet S (2009) Shrinking and splitting of drainage basins in orogenic landscapes from the migration of the main drainage divide. Nat Geosci 2:766–771. https://doi.org/10.1038/ngeo666

    Article  Google Scholar 

  • Bonnet S, Crave A (2003) Landscape response to climate change: insights from experimental modeling and implications for tectonic vs. climatic uplift of topography. Geology 31:123–126

    Article  Google Scholar 

  • Bosence DWJ, Pomar L, Waltham D, Lankester TG (1994) Computer modelling a Miocene carbonate platform, Spain. Am Assoc Petrol Geol Bull 78:247–266

    Google Scholar 

  • Bosworth W, Crevello P, Winn RD Jr, Steinmetz J (1998) Structure, sedimentation, and basin dynamics during rifting of the Gulf of Suez and north-western Red Sea. In: Purser BH, Bosence DWJ (eds) Sedimentation and Tectonics in Rift Basins: RedSea—Gulf of Aden. Chapman Hall, London, pp 77–96

    Chapter  Google Scholar 

  • Bosworth W, Taviani M (1996) Late Quaternary reorientation of stress field and extension direction in the southern Gulf of Suez, Egypt: evidence from uplifted coral terraces, mesoscopic fault arrays, and borehole breakouts. Tectonics 15:791–802

    Article  Google Scholar 

  • Bull WB (1964) Relation of alluvial fan size and slope to drainage basin size and lithology in western Fresno County, California. U.S. Geological Survey Professional Paper 450-B, pp 51–53

    Google Scholar 

  • Burchette TP (1988) Tectonic control on carbonate platform facies distribution and sequence development: Miocene, Gulf of Suez. Sed Geol 59:179–204

    Article  Google Scholar 

  • Colletta B, LeQuellec P, Letouzey J, Moretti I (1988) Longitudinal evolution of the Suez rift structure (Egypt). Tectonophysics 153:221–233

    Article  Google Scholar 

  • Collier REL, Leeder MR, Trout M, FerentinosG Lyberis E, Papatheodorous G (2000) High sediment yields and cool, wet winters: rest of past glacial paleoclimates in the northern Mediterranean. Geology 28(11):999–1002

    Article  Google Scholar 

  • Davies PJ (1988) Evolution of the Great Barrier Reef: reductionist dream or expansionist vision, vol 1. In: Proceedings of 6th International Coral Reef Symposium, Townsville, pp 9–17

    Google Scholar 

  • Decima A, Wezel FC (1973) Late Miocene evaporites of the Central Sicilian Basin. In: Ryan WBF, Hsü KJ (eds) Initial reports of the Deep Sea Drilling Project, vol 13, Part2. U.S. Government Printing Office, Washington D.C, pp 1234–1240

    Google Scholar 

  • EGSMA (1981) Egyptian geological survey and mining authority, Geological map of Egypt, 1981. Ministry of Industry and Mineral Resources

    Google Scholar 

  • Egyptian General Petroleum Corporation (EGPC) (1964) Oligocene and Miocene rock-stratigraphy of the Gulf of Suez region, report of the Stratigraphic Committee: Egyptian General Petroleum Corporation, 142 pp

    Google Scholar 

  • Eide CH, Muller R, Helland-Hansen W (2017) Using climate to relate water-discharge and area in modern and ancient catchments. Sedimentology. https://doi.org/10.1111/sed.12426

    Article  Google Scholar 

  • Einsele G, Ratschbacher L, Wetzel A (1996) The Himalaya-Bengal Fan denudation-accumulation system during the past 20Ma. J Geol 104:163–184

    Article  Google Scholar 

  • Enos P (1991) Sedimentary Parameters for computer modeling, sedimentary modeling: computer simulation and methods for improved parameter definition, vol 233. In: Franseen EK, Watney WL, St. CG Kendall, Ross W (eds) Kansas Geological Survey, pp 63–98

    Google Scholar 

  • Fawzy H, Abdel Aal A (1984) Regional study of Miocene evaporates and Pliocene–recent sediments in the Gulf of Suez. In: 7th EGPC Exploration Seminar, Egyptian General Petroleum Corporation, Cairo, Egypt, pp 49–74

    Google Scholar 

  • Garfunkel Z (1988) Relation between continental rifting and uplifting: evidence from the Suez rift and northern Red Sea. Tectonophysics 150:33–49

    Article  Google Scholar 

  • Garfunkel Z, Bartov Y (1977) The tectonics of the Suez rift. Geol Surv Isr Bull 71:45

    Google Scholar 

  • Geriesh MH, El-Rayes AE, Fouad A (2004) Runoff control and water management in WadiGhweabae hydrographic basin, Northwest of Gule of Suez region, Egypt. In: Proceedings of 7th conference on Geology of Sinai for Development, Ismailia, pp 53–67

    Google Scholar 

  • Gheith AM, El-Sherbini ME (1993) Post-Miocene Sedimentation in the Gulf of Suez, Egypt. JKA U Mar Sci 4:73–92

    Article  Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (2012) The geologic time scale. Elsevier. https://doi.org/10.1016/b978-0-444-59425-9.10003-4

    Chapter  Google Scholar 

  • Guillocheau F, Rouby D, Robin C, Helm C, Rolland N, Carlier Le, de Veslud C, Braun J (2012) Quantification and causes of the terrigeneous sediment budget at the scale of a continental margin: a new method applied to the Namibia-South Africa margin. Basin Res 24:3–30. https://doi.org/10.1111/j.1365-2117.2011.00511.x

    Article  Google Scholar 

  • Hampson GJ, Duller RA, Petter AL, Robinson RAJ, Allen PA (2014) Mass-balance constraints on stratigraphic interpretation of linked alluvial-coastal-shelfal deposits from source to sink: example from Cretaceous Western Interior Basin, Utah and Colorado, U.S.A. J Sed Res 84:935–960

    Article  Google Scholar 

  • Haq BU, Al-Qahtani AM (2005) Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia 10(2):127–160

    Google Scholar 

  • Hardenbol J, Thierry J, Farley MB, Jacquin T, de Graciansky PC, Vail P (1998) Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins. In: Graciansky PC et al (eds) Mesozoic and cenozoic sequence stratigraphy of European Basins: SEPM special publication, vol 60, pp 3–13, charts 1–8

    Chapter  Google Scholar 

  • Hooke RL (1968) Steady-state relationships onarid-region alluvial fans in closed basins. Am J Sci 266:609–629

    Article  Google Scholar 

  • Jackson CA-L, Rotevatn A (2013) 3-D seismic analysis of the structure and evolution of a salt-influenced normal fault zone: a test of competing fault growth models. J Struct Geol 54(2013):215–234

    Article  Google Scholar 

  • Kennan L, Lamb SH, Hoke L (1997) High-altitude palaeo surfaces in the Bolivian Andes; evidence for late Cenozoic surface uplift. In: Widdowson M (eds) Palaeo surfaces; recognition, reconstruction and palaeo environmental interpretation, special publication, The Geological Society in London, vol 120, pp 307–323

    Article  Google Scholar 

  • Moretti I, Colletta B (1987) Spatial and temporal evolution of the Suez Rift subsidence. J Geodyn 7:151–168

    Article  Google Scholar 

  • Moustafa AR (1996) Internal structure and deformation of an accommodation zone in the northern part of the Suez rift. J Struct Geol 18:93–107

    Article  Google Scholar 

  • Moustafa AG (1976) Block faulting in the Gulf of Suez. In: Proceedings of the 5th petroleum exploration and production seminar, Egypt, vol 1, 19p

    Google Scholar 

  • Orszag-Sperber F, Purser BH, Rioual M, Plaziat JC (1998) Post Miocene sedimentation and rift dynamics in the southern Gulf of Suez and northern Red Sea. In: Purser BH, Bosence DWJ (eds) Sedimentation and tectonics of rift basins: Red Sea-Gulf of Aden. Chapman and Hall, London, pp 427–447

    Chapter  Google Scholar 

  • Patton TL, Moustafa AR, Nelson RA, Abdine SA (1994) Tectonic evolution and structural setting of the Suez Rift. In: London SM (ed) Interior rift basins, vol 59. American Association of Petroleum Geologists Memoir, pp 7–55

    Google Scholar 

  • Pechlivanidou S, Cowie PA, Hannisdal B, Whittaker AC, Gawthorpe RL, Pennos C, Riiser OS (2017) Source-to-sink analysis in an active extensional setting: Holocene erosion and deposition in the Sperchios rift, central Greece. Basin Res. https://doi.org/10.1111/bre.12263

    Article  Google Scholar 

  • Peihzen Z, Molnar P, Downs WR (2001) Increase sedimentation rates and grain sizes 2-4 Myr agodue to the influence of climate change on erosion rates. Nature 410:891–897

    Article  Google Scholar 

  • Plaziat J-C, Baltzer F, Choukri A, Conchon O, Freytet P, Orszag-Sperber F, Raguideau A, Reyss J-L (1998) Quaternary marine and continental sedimentation in the northern Red Sea and Gulf of Suez (Egyptian coast): influences of rift tectonics, climatic changes and sea-level fluctuations. In: Purser BH, Bosence DWJ (eds) Sedimentation and Tectonics in Rift Basins Red Sea: Gulf of Aden. Springer, Dordrecht

    Google Scholar 

  • Poag CW, Sevon WD (1989) A record of Appalachian denudation in post-Rift Mesozoic and Cenozoic sedimentary deposits of the U.S. Middle Atlantic Continental margin. Geomorphology 2:119–157

    Article  Google Scholar 

  • Richardson M, Arthur MA (1988) The Gulf of Suez-northern Red Sea Neogene rift: a quantitative basin analysis. Marine Pet Geol 5:247–270

    Article  Google Scholar 

  • Rioual M (1996) Sedimentation et tectonique post-Miocene dans Ie rift du Golfe de Suez et Ie NW de la Mer Rouge (Egypte). Doctoral Thesis, Universite de Paris Sud, 240 pp

    Google Scholar 

  • Rohais S, Barrois A, Colletta B, Moretti I (2016) Pre-salt to salt stratigraphic architecture in a rift basin: insights from a basin-scale study of the Gulf of Suez (Egypt). Arab J Geosci 9:317. https://doi.org/10.1007/s12517-016-2327-8

    Article  Google Scholar 

  • Rohais S, Bonnet S, Eschard R (2012) Sedimentary record of tectonic and climatic erosional perturbations in an experimental coupled catchment-fan system. Basin Res 24:198–212. https://doi.org/10.1111/j.1365-2117.2011.00520.x

    Article  Google Scholar 

  • Rouby D, Bonnet S, Guillocheau F, Gallagher K, Robin C, Biancotto F, Dauteuil O, Braun J (2009) Sediment supply to the Orange sedimentary system over the last 150 My: an evaluation from sedimentation/denudation balance. Mar Petrol Geol 26:782–794

    Article  Google Scholar 

  • Said R (1990) Cenozoic. In: Said R (ed) The geology of Egypt. Balkema, Rotterdam, pp 451–486

    Google Scholar 

  • Said R (1962) The Geology of Egypt. Elsevier Pub!. Co., Amsterdam, New York, 377 p

    Google Scholar 

  • Saito K, Oguchi T (2005) Slope of alluvial fans in humid regions of Japan, Taiwan, and Philippines. Geomorphology 70:147–162

    Article  Google Scholar 

  • Steckler MS (1985) Uplift and extension at the Gulf of Suez: indications of induced mantle convection. Nature 317:135–139

    Article  Google Scholar 

  • Steckler MS, Bertholot F, Lyberis N, Le Pichon X (1988) Subsidence in the Gulf of Suez: implications for rifting and plate kinematics. Tectonophysics 153:249–270

    Article  Google Scholar 

  • Steckler MS, Omar GI (1994) Controls on erosional retreat of the uplifted rift flanks at the Gulf of Suez and Northern Red Sea. J Geophys Res 99:12159–12173

    Article  Google Scholar 

  • Syvitski JPM, Morehead MD (1999) Estimating river—sediment discharge to the ocean: application to the Eel Margin, northern California. Mar Geol 154:13–28

    Article  Google Scholar 

  • Syvitski JPM, Peckham SD, Hilberman RD, Mulder T (2003) Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sed Geol 162:5–24. https://doi.org/10.1016/j.sedgeo.2003.11.001

    Article  Google Scholar 

  • Sømme TO, Helland-Hansen W, Martinsen OJ, Thurmond JB (2009) Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems. Basin Res 21:361–387

    Article  Google Scholar 

  • Whitakker AC, Attal M, Allen PA (2010) Characterising the origin, nature and fate of sediment exported from catchments perturbed by active tectonics. Basin Res 22:809–828

    Google Scholar 

  • Willett SD, McCoy SW, Perron JT, Goren L, Chen C-Y (2014) Dynamic reorganization of river basins. Science 343:1248765. https://doi.org/10.1126/science.1248765

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Rohais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rohais, S., Rouby, D. (2020). Source-to-Sink Analysis of the Plio-Pleistocene Deposits in the Suez Rift (Egypt). In: Khomsi, S., Roure, F., Al Garni, M., Amin, A. (eds) Arabian Plate and Surroundings: Geology, Sedimentary Basins and Georesources. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-030-21874-4_4

Download citation

Publish with us

Policies and ethics