Skip to main content

Beyond the Initial Phase: Compartment Models for Disease Transmission

  • Chapter
  • First Online:
Quantitative Methods for Investigating Infectious Disease Outbreaks

Part of the book series: Texts in Applied Mathematics ((TAM,volume 70))

Abstract

We start with simple models that describe the dynamics of disease transmission over time t in a constant population of size m and investigate the long-term epidemic dynamics as t →. In these simple models, we assume there is no replacement of susceptible individuals due to demographic input of susceptible newborns. The population is partitioned into compartments, with at least one compartment representing the prevalence of individuals who are susceptible to infection and at least one compartment representing the prevalence of individuals who are infectious (at time t).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, L. J. (2010). An introduction to stochastic processes with applications to biology. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Allen, L. J. (2017). A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infectious Disease Modelling, 2(2), 128–142.

    Article  Google Scholar 

  • Anderson, D., & Watson, R. (1980). On the spread of a disease with gamma distributed latent and infectious periods. Biometrika, 67(1), 191–198.

    Article  Google Scholar 

  • Andersson, H., & Djehiche, B. (1998). A threshold limit theorem for the stochastic logistic epidemic. Journal of Applied Probability, 35(3), 662–670.

    Article  MathSciNet  Google Scholar 

  • Bailey, N. T. J. (1975). The mathematical theory of infectious diseases and its applications (2nd ed.). London: The Griffin & Company Ltd.

    MATH  Google Scholar 

  • Ball, F. G., Britton, T., & Neal, P. (2016). On expected durations of birth-death processes, with applications to branching processes and SIS epidemics. Journal of Applied Probability, 53, 203–215.

    Article  MathSciNet  Google Scholar 

  • Brauer, F. (2008). Compartmental models in epidemiology. In F. Brauer, P. van den Driessche, & J. Wu (Eds.), Mathematical epidemiology (Chapter 2). Berlin: Springer.

    Chapter  Google Scholar 

  • Brauer, F., van den Driessche, P., & Wu, J. (Eds.). (2008). Mathematical epidemiology. Berlin: Springer.

    MATH  Google Scholar 

  • Castillo-Chávez, C., Blower, S., van den Driessche, P., Kirschner D., & Yakubu, A. A. (2000). Mathematical approaches for emerging and reemerging infectious diseases. New York, NY: Springer.

    MATH  Google Scholar 

  • Clancy, D. (2018). Precise estimates of persistence time for SIS infections in heterogeneous populations. Bulletin of Mathematical Biology, 80(11), 2871–2896. https://dol.org/10.1007/s11538-018-0491-6

    Article  MathSciNet  Google Scholar 

  • Clancy, D., & Mendy, S. T. (2011). Approximating the quasi-stationary distribution of the SIS model for endemic infection. Methodology and Computing in Applied Probability, 12(3). https://doi.org/10.1007/s11009-010-9177-8

    Article  MathSciNet  Google Scholar 

  • Cox, D. R. (2006). Principles of statistical inference. Cambridge: Cambridge Press.

    Book  Google Scholar 

  • Deakin, M. A. B. (1975). A standard form for the Kermack-McKendrick epidemic equations. Bulletin of Mathematical Biology, 37, 91–95.

    Article  Google Scholar 

  • Diekmann, O., & Heesterbeek, J. A. P. (2000). Mathematical epidemiology of infectious diseases: Model building, analysis and interpretation. Mathematical and computational biology (Vol. 5). Chichester: Wiley.

    MATH  Google Scholar 

  • Erdös, P., & Rényi, A. (1961). On the evolution of random graphs. Bulletin of the International Statistical Institute, 38, 343–347.

    MathSciNet  MATH  Google Scholar 

  • Feng, Z., Xu, D., & Zhao, H. (2007). Epidemiological models with non-exponentially distributed disease stages and applications to disease control. Bulletin of Mathematical Biology. https://doi.org/10.1007/s11538-006-9174-9

    Article  MathSciNet  Google Scholar 

  • Hernádez-Suárez, C. M., & Castillo-Chavex, C. (1999). A basic result on the integral for birth-death Markov processes. Mathematical Biosciences, 161, 95–104.

    Article  MathSciNet  Google Scholar 

  • Hethcote, H. W., & van den Driessche, P. (1991). Some epidemiological models with nonlinear incidence. Journal of Mathematical Biology, 29, 271.

    Article  MathSciNet  Google Scholar 

  • Isham, V. (1991). Assessing the variability of stochastic epidemics. Mathematical Biosciences, 107, 209–224.

    Article  Google Scholar 

  • Isham, V. (2005). Stochastic models for epidemics. In A. C. Davison, Y. Dodge, & N. Wermuth (Eds.), Celebrating statistics: papers in honour of Sir David Cox on his 80 th birthday. Oxford statistical science series (Chapter 1, Vol. 33). Oxford: Oxford University Press.

    Google Scholar 

  • Karlin, S., & Taylor, H. M. (1975). A first course in stochastic processes (2nd ed.). Cambridge, MA: Academic Press.

    MATH  Google Scholar 

  • Kendall, D. (1956). Deterministic and stochastic epidemics in closed populations. In Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 4, pp. 149–165). Berkeley, CA: University of California Press.

    Google Scholar 

  • Kermack, W. O., & McKendrick, A. G. (1927). Contributions to the mathematical theory of epidemics, part I. Proceedings of the Royal Society London A, 115, 700–721.

    Google Scholar 

  • Krishnarajah, I., Cook, A., Marion, G., & Gibson, G. (2005). Novel moment closure approximations in stochastic epidemics. Bulletin of Mathematical Biology, 67, 855–873.

    Article  MathSciNet  Google Scholar 

  • Lefèvre, C., & Picard, P. (1995). Collective epidemic processes: A general modelling approach to the final outcome of SIR infectious diseases. In D. Mollison (Ed.), Epidemic models: Their structure and relation to data (pp. 53–70). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Li, M. Y., Muldowney, J. S., & van den Driessche, P. (1999). Global stability of SEIRS models in epidemiology. Canadian Applied Mathematics Quarterly, 7(4), 409–425.

    MathSciNet  MATH  Google Scholar 

  • Ludwig, D. (1975). Final size distributions for epidemics. Mathematical Biosciences, 23, 33–46.

    Article  MathSciNet  Google Scholar 

  • Martin-Löf, A. (1988). The final size of a nearly critical epidemic, and the first passage time of a Wienner process to a parabolic barrier. Journal of Applied Probability, 35, 671–682.

    Article  Google Scholar 

  • Nåsell, I. (2002). Stochastic models of some endemic infections. Mathematical Biosciences, 179, 1–19.

    Article  MathSciNet  Google Scholar 

  • Nåsell, I. (2003). Moment closure and the stochastic logistic model. Theoretical Population Biology, 63(2), 159–168.

    Article  Google Scholar 

  • Pinto, A., Martins, J., & Stollenwerk, N. (2009). The higher moments dynamic on SIS model. In T. E. Simos, et al. (Eds.), Numerical Analysis and Applied Mathematics, AIP Conference Proceedings (Vol. 1168, pp. 1527–1530). College Park, MD: AIP.

    Google Scholar 

  • Ross, S. M. (1996). Stochastic processes (2nd ed.). New York, NY: Wiley.

    MATH  Google Scholar 

  • Scalia-Tomba, G. (1985). Asymptotic final size distribution for some chain binomial processes. Advances in Applied Probability, 17, 477–495.

    Article  MathSciNet  Google Scholar 

  • von Bahr, B., & Martin-Löf, A. (1980). Threshold limit theorems for some epidemic processes. Advances in Applied Probability, 12, 319–349.

    Article  MathSciNet  Google Scholar 

  • Wearing, H. J., Rohani, P., & Keeling, M. J. (2005). Appropriate models from the management of infectious diseases. PLoS Medicine, 7, 621–627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Crown

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yan, P., Chowell, G. (2019). Beyond the Initial Phase: Compartment Models for Disease Transmission. In: Quantitative Methods for Investigating Infectious Disease Outbreaks. Texts in Applied Mathematics, vol 70. Springer, Cham. https://doi.org/10.1007/978-3-030-21923-9_5

Download citation

Publish with us

Policies and ethics