Skip to main content

A State-of-the-Art Review

  • Chapter
  • First Online:
Emotion, Personality and Cultural Aspects in Crowds

Abstract

In this chapter we present the related work identified with the main goal of this monograph. In crowds, cultural and personality influence can be considered in attributes such as interpersonal spaces, speeds of pedestrians, collision avoidance, and formation of groups of people in the crowd, among others. Several researches by Zhan et al. (MVA 19(5–6):345–357, 2008), Weina et al. (IEEE Trans Pattern Anal Mach Intell 34(5):1003–1016, 2012), Solmaz et al. (IEEE Trans Pattern Anal Mach Intell 34(10):2064–2070, 2012), Chandran et al. (Identifying social groups in pedestrian crowd videos. In: ICAPR, pp 1–6, 2015) focus on group identification through computational vision for information extraction. Some group detection and behavior work are presented in Sect. 4.1. In addition to information about individuals and their groups, fundamental diagrams can also be used to infer culture. The fundamental diagrams describe the relationship between velocity, density, and flow of individuals in multitudes, as described in Sect. 2.6 . Section 4.2 presents some work that use FDs in crowds by Cao et al. (Physica A Stat Mech Appl 506:661–670, 2018), Helbing et al. (Phys Rev E Stat Nonlin Soft Matter Phys 75(4 Pt 2):046, 109, 2007), Seyfried et al. (Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. In: Pedestrian and evacuation dynamics 2008. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 145–156, 2010), Wolinski et al. (Comput Graph Forum 33(2):303–312, 2014), Narang et al. (PLoS One 10(4):1–17, 2015), Best et al. (Densesense: interactive crowd simulation using density-dependent filters. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, SCA ’14. Eurographics Association, Aire-la-Ville, Switzerland, pp 97–102, 2015). Section 4.3 shows some research about personality by Goldberg (From ace to zombie: some explorations in the language of personality, chap 6. Lawrence Erlbaum Associates, Hillsdale, pp 203–234, 1982) and emotion traits by Ortony et al. (The cognitive structure of emotions. Cambridge University Press, New York, 1990). Finally, Sect. 4.4 addresses some work that seek to extract or simulate cultural aspects by Hofstede et al. (Cultures and organizations: software of the mind, vol 2. McGraw-Hill, London, 1991) in crowds by Chattaraj et al. (Adv Complex Syst 12(03):393–405, 2009), Guy et al. (Simulating heterogeneous crowd behaviors using personality trait theory. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA ’11. ACM, New York, pp 43–52, 2011), Lala et al. (Towards a virtual environment for capturing behavior in cultural crowds. In: 2011 sixth international conference on digital information management, Melbourne, Australia, pp 310–315, 2011), Kaminka and Fridman (Simulating urban pedestrian crowds of different cultures. Tech. Rep. 3, 2018). Also the work performed by Sorokowska et al. (J Cross Cult Psychol 48:577–592, 2017), which investigate the preferred distance that a pedestrian keeps from others in several countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this book, it was considered that the density 〈Φ〉 (amount of people pm 2) can be: low, when 〈Φ〉≤ 1.5, medium, when 1.5 < 〈Φ〉≤ 4 and high, when 〈Φ〉 > 4. These values were empirically defined

References

  • Berg J, Guy SJ, Lin MC, Manocha D (2009) Reciprocal n-body collision avoidance. In: Pradalier C, Siegwart R, Hirzinger G (eds) Robotics research. Springer Berlin Heidelberg, Berlin, pp 3–19

    Google Scholar 

  • Best A, Narang S, Curtis S, Manocha D (2014) Densesense: interactive crowd simulation using density-dependent filters. In: Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, SCA ’14. Eurographics Association, Aire-la-Ville, Switzerland, pp 97–102. http://dl.acm.org/citation.cfm?id=2849517.2849534

    Google Scholar 

  • Cao S, Seyfried A, Zhang J, Holl S, Song W (2017) Fundamental diagrams for multidirectional pedestrian flows. J Stat Mech: Theory Exp 2017:33404–33412

    Article  Google Scholar 

  • Cao S, Lian L, Chen M, Yao M, Song W, Fang Z (2018) Investigation of difference of fundamental diagrams in pedestrian flow. Physica A Stat Mech Appl 506:661–670

    Article  Google Scholar 

  • Chandran A, Poh LA, Vadakkepat P (2015) Identifying social groups in pedestrian crowd videos. In: ICAPR, pp 1–6. https://doi.org/10.1109/ICAPR.2015.7050677

    Google Scholar 

  • Chattaraj U, Seyfried A, Chakroborty P (2009) Comparison of pedestrian fundamental diagram across cultures. Adv Complex Syst 12(03):393–405. https://doi.org/10.1142/S0219525909002209

    Article  Google Scholar 

  • Davis KL, Panksepp J (2011) The brain’s emotional foundations of human personality and the affective neuroscience personality scales. Neurosci Biobehav Rev 35:1946–1958

    Article  Google Scholar 

  • Deng Z, Vahdat A, Hu H, Mori G (2016) Structure inference machines: recurrent neural networks for analyzing relations in group activity recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas

    Google Scholar 

  • Feng L, Bhanu B (2015) Understanding dynamic social grouping behaviors of pedestrians. IEEE J Sel Topics Signal Process 9(2):317–329. https://doi.org/10.1109/JSTSP.2014.2365765

    Article  Google Scholar 

  • Flötteröd G, Lämmel G (2015) Bidirectional pedestrian fundamental diagram. Transp Res Part B Methodol 71:194–212. https://doi.org/10.1016/j.trb.2014.11.001, http://www.sciencedirect.com/science/article/pii/S0191261514001908

    Article  Google Scholar 

  • Goldberg LR (1982) From ace to zombie: some explorations in the language of personality, chap 6. Lawrence Erlbaum Associates, Hillsdale, pp 203–234

    Google Scholar 

  • Goldberg LR (1990) An alternative “description of personality”: the Big-Five factor structure. J Pers Soc Psychol 59(6):1216–1229

    Article  Google Scholar 

  • Guy SJ, Kim S, Lin MC, Manocha D (2011) Simulating heterogeneous crowd behaviors using personality trait theory. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics symposium on computer animation, SCA ’11. ACM, New York, pp 43–52. https://doi.org/10.1145/2019406.2019413

    Chapter  Google Scholar 

  • Hall ET (1966) The hidden dimension. In: A doubleday anchor book, vol 609. Random House, Inc., Doubleday, Garden City

    Google Scholar 

  • Hausdorff F (1962) Set theory. Chelsea Publishing Company, New York

    MATH  Google Scholar 

  • Helbing D, Farkas I, Vicsek T (2000) Simulating dynamical features of escape panic. Nature 407(6803):487–490. https://doi.org/10.1038/35035023

    Article  Google Scholar 

  • Helbing D, Johansson A, Al-Abideen HZ (2007) Dynamics of crowd disasters: an empirical study. Phys Rev E Stat Nonlin Soft Matter Phys 75(4 Pt 2):046, 109

    Google Scholar 

  • Hofstede G, Hofstede GJ, Minkov M (1991) Cultures and organizations: software of the mind, vol 2. McGraw-Hill, London

    Google Scholar 

  • Ibrahim MS, Muralidharan S, Deng Z, Vahdat A, Mori G (2016) A hierarchical deep temporal model for group activity recognition. In: The IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas

    Google Scholar 

  • Kaminka GA, Fridman N (2018) Simulating urban pedestrian crowds of different cultures. Tech. Rep. 3. https://doi.org/10.1145/3102302

    Article  Google Scholar 

  • Lala D, Thovuttikul S, Nishida T (2011) Towards a virtual environment for capturing behavior in cultural crowds. In: 2011 6th international conference on digital information management, Melbourn, Australia, pp 310–315. https://doi.org/10.1109/ICDIM.2011.6093362

    Google Scholar 

  • Narang S, Best A, Curtis S, Manocha D (2015) Generating pedestrian trajectories consistent with the fundamental diagram based on physiological and psychological factors. PLoS One 10(4):1–17. https://doi.org/10.1371/journal.pone.0117856

    Article  Google Scholar 

  • Ortony A, Clore GL, Collins A (1990) The cognitive structure of emotions. Cambridge University Press, New York

    Google Scholar 

  • Palanisamy G, Manikandan TT (2017) Group behaviour profiling for detection of anomaly in crowd. In: International conference on technical advancements in computers and communications (ICTACC), IEEE, Melmaruvathur, India, pp 11–15

    Google Scholar 

  • Saifi L, Boubetra A, Nouioua F (2016) An approach for emotions and behavior modeling in a crowd in the presence of rare events. Adapt Behav 24:428–445

    Article  Google Scholar 

  • Seyfried A, Schadschneider A (2008) Fundamental diagram and validation of crowd models. In: Proceedings of the 8th international conference on cellular automata for research and industry, ACRI ’08. Springer-Verlag, Berlin, Heidelberg, pp 563–566. https://doi.org/10.1007/978-3-540-79992-4_77

    Google Scholar 

  • Seyfried A, Steffen B, Klingsch W, Boltes M (2005) The fundamental diagram of pedestrian movement revisited. J Stat Mech: Theory Exp 10:10002–10015

    Article  Google Scholar 

  • Seyfried A, Boltes M, Kähler J, Klingsch W, Portz A, Rupprecht T, Schadschneider A, Steffen B, Winkens A (2010) Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. In: Klingsch WWF, Rogsch C, Schadschneider A, Schreckenberg M (eds) Pedestrian and evacuation dynamics 2008. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 145–156

    Chapter  Google Scholar 

  • Shao J, Kang K, Loy CC, Wang X (2015) Deeply learned attributes for crowded scene understanding. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), Boston, pp 4657–4666. https://doi.org/10.1109/CVPR.2015.7299097

  • Solera F, Calderara S, Cucchiara R (2013) Structured learning for detection of social groups in crowd. In: 2013 10th IEEE international conference on advanced video and signal based surveillance, Krakow, Poland, pp 7–12. https://doi.org/10.1109/AVSS.2013.6636608

    Chapter  Google Scholar 

  • Solmaz B, Moore BE, Shah M (2012) Identifying behaviors in crowd scenes using stability analysis for dynamical systems. IEEE Trans Pattern Anal Mach Intell 34(10):2064–2070. https://doi.org/10.1109/TPAMI.2012.123

    Article  Google Scholar 

  • Sorokowska A, Sorokowski P, Hilpert P, Cantarero K, Frackowiak T, Ahmadi K, Alghraibeh AM, Aryeetey R, Bertoni A, Bettache K, Blumen S, Błażejewska M, Bortolini T, Butovskaya M, C FN, Cetinkaya H, Cunha D, David D, David OA, Dileym FA, Espinosa ACD, Donato S, Dronova D, Dural S, Fialová J, Fisher M, Gulbetekin E, Akkaya AH, Hromatko I, Iafrate R, Iesyp M, James B, Jaranovic J, Jiang F, Kimamo CO, Kjelvik G, Koç F, Laar A, Lopes FA, Macbeth G, Marcano NM, Martinez R, Mesko N, Molodovskaya N, Moradi K, Motahari Z, Mühlhauser A, Natividade JC, Ntayi J, Oberzaucher E, Ojedokun O, Omar-Fauzee MSB, Onyishi IE, Paluszak A, Portugal A, Razumiejczyk E, Realo A, Relvas AP, Rivas M, Rizwan M, Salkičević S, Sarmány-Schuller I, Schmehl S, Senyk O, Sinding C, Stamkou E, Stoyanova S, Šukolová D, Sutresna N, Tadinac M, Teras A, Ponciano ELT, Tripathi R, Tripathi N, Tripathi M, Uhryn O, Yamamoto ME, Yoo G, Pierce JD (2017) Preferred interpersonal distances: a global comparison. J Cross Cult Psychol 48:577–592

    Google Scholar 

  • Weina G, Robert TC, Barry R (2012) Vision-based analysis of small groups in pedestrian crowds. IEEE Trans Pattern Anal Mach Intell 34(5):1003–1016. https://doi.org/10.1109/TPAMI.2011.176 http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.176

    Article  Google Scholar 

  • Wolinski D, Guy SJ, Olivier AH, Lin M, Manocha D, Pettré J (2014) Parameter estimation and comparative evaluation of crowd simulations. Comput Graph Forum 33(2):303–312. https://doi.org/10.1111/cgf.12328

    Article  Google Scholar 

  • Zhan B, Monekosso D, Remagnino P, Velastin SA, Xu L (2008) Crowd analysis: a survey. MVA 19(5–6):345–357. https://doi.org/10.1007/s00138-008-0132-4

    Google Scholar 

  • Zhou B, Tang X, Zhang H, Wang X (2014) Measuring crowd collectiveness. IEEE Trans Pattern Anal Mach Intell 36(8):1586–1599. https://doi.org/10.1109/TPAMI.2014.2300484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Favaretto, R.M., Musse, S.R., Costa, A.B. (2019). A State-of-the-Art Review. In: Emotion, Personality and Cultural Aspects in Crowds. Springer, Cham. https://doi.org/10.1007/978-3-030-22078-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-22078-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-22077-8

  • Online ISBN: 978-3-030-22078-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics