Skip to main content

Path-Dependent SDEs in Hilbert Spaces

  • Conference paper
  • First Online:
Frontiers in Stochastic Analysis–BSDEs, SPDEs and their Applications (BSDE-SPDE 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 289))

Included in the following conference series:

Abstract

We study path-dependent SDEs in Hilbert spaces. By using methods based on contractions in Banach spaces, we prove the Gâteaux differentiability of generic order n of mild solutions with respect to the starting point and the continuity of the Gâteaux derivatives with respect to all the data.

This research has been partially supported by the ERC 321111 Rofirm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(B_b([0,T],H)\) denotes the space of bounded Borel functions \([0,T]\rightarrow H\).

  2. 2.

    If \(x,x'\in X\), the segment \([x,x']\) is the set \(\{\zeta x+(1-\zeta )x'|\zeta \in [0,1]\}\).

  3. 3.

    Recall notation at p. 5.

  4. 4.

    We recall that \(B_b([0,T],H)\) is endowed with the norm \(|\cdot |_\infty \).

  5. 5.

    The limits should be understood in the suitable spaces \(Y_k\). For instance, when computing \(\lim _{\varepsilon \rightarrow 0}\frac{\mathbf {I_1}}{\varepsilon }\), the object \(\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u+\varepsilon x_n)\) should be considered in the space \(Y_2\), which can be done thanks to the inductive hypothesis.

References

  1. Cerrai, S.: Second-Order PDE’s in Finite and Infinite Dimension. Springer (2001)

    Google Scholar 

  2. Cont, R., Fournié, D.-A.: Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal. 259, 1043–1072 (2010)

    Article  MathSciNet  Google Scholar 

  3. Cont, R., Fournié, D.-A.: A functional extension of the Itô formula. C. R. Math. Acad. Sci. Paris, Ser. I 348, 57–61 (2010)

    Article  MathSciNet  Google Scholar 

  4. Cont, R., Fournié, D.-A.: Functional Itô calculus and stochastic integral representation of martingales. Ann. Probab. 41, 109–133 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cosso, A., Di Girolami, C., Russo, F.: Calculus via regularizations in Banach spaces and Kolmogorov-type path-dependent equations. In: Probability on Algebraic and Geometric Structures, pp. 43–65. American Mathematical Society (2016)

    Google Scholar 

  6. Cosso, A., Russo, F.: A regularization approach to functional Itô calculus and strong-viscosity solutions to path-dependent PDEs. Preprint arXiv:1401.5034 (2014)

  7. Da Prato, G., Zabczyck, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press (1992)

    Google Scholar 

  8. Da Prato, G., Zabczyck, J.: Second Order Partial Differential Equations in Hilbert Spaces. Cambridge University Press (2002)

    Google Scholar 

  9. Da Prato, G., Zabczyck, J.: Stochastic Equations in Infinite Dimensions, 2 edn. Cambridge University Press (2014)

    Google Scholar 

  10. Dupire, B.: Functional Itô Calculus. Bloomberg Portfolio Research Paper (2009)

    Google Scholar 

  11. Flett, T.M.: Differential Analysis. Cambridge University Press (1980)

    Google Scholar 

  12. Gawarecki, L., Mandrekar, V.: Stochastic Differential Equations in Infinite Dimensions. Springer (2011)

    Google Scholar 

  13. Granas, A., Dugundji, J.: Fixed Point Theory. Springer (2003)

    Google Scholar 

  14. Knoche, C., Frieler, K.: Solutions of stochastic differential equations in infinite dimensional Hilbert spaces and their dependence on initial data. Diplomarbeit. Universität Bielefeld, Fakultät für Mathematik (2001)

    Google Scholar 

  15. Mohammed, S.-E.A.: Stochastic Functional Differential Equations. Pitman (1984)

    Google Scholar 

  16. Rosestolato, M.: A note on stochastic Fubini’s theorem and stochastic convolution. arXiv:1606.06340 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Rosestolato .

Editor information

Editors and Affiliations

4 Appendix

4 Appendix

Proof of Proposition 2.1 Suppose that the derivatives \(\partial ^j_{x_1\ldots x_j}f(u)\) exists for all \(u\in U\), \(x_1,\ldots ,x_j\in X_0\), \(j=1,\ldots ,n\), separately continuous in \(u,x_1,\ldots , x_j\). We want to show that \(f\in \mathscr {G}^{n}(U,Y;X_0)\).

We proceed by induction on n. Let \(n=1\). Since \(\partial _xf(u)\) is continuous in u, for all \(x\in X_0\), we have that \(X_0\rightarrow Y,\ x\mapsto \partial _xf(u)\) is linear ([11, Lemma 4.1.5]). By assumption, it is also continuous. Hence \(x \mapsto \partial _x f(u)\in L(X_0,Y)\) for all \(u\in U\). This shows the existence of \( \partial _{X_0}f\). The continuity of \(U\rightarrow L_s(X_0,Y),\ u\mapsto \partial _{X_0} f(u)\), comes from the separate continuity of (2.1) and from the definition of the locally convex topology on \(L_s(X_0,Y)\). This shows that \(f\in \mathscr {G}^{1}(U,Y;X_0)\).

Let now \(n>1\). By inductive hypothesis, we may assume that \(f\in \mathscr {G}^{n-1}(U,Y;X_0)\) and

$$ \partial _{X_0 }^{j}f(u).(x_1,\ldots ,x_j)=\partial _{x_1\ldots x_j}^jf(u)\qquad \forall u\in U, \ \forall j=1,\ldots ,n-1, \ \forall (x_1,\ldots , x_j)\in X_0^j. $$

Let \(x_n\in X_0\). The limit

$$\begin{aligned} \lim _{t\rightarrow 0}\frac{ \partial ^{n-1}_{X_0 }f(u+tx_n)- \partial ^{n-1}_{X_0 }f(u)}{t}=\Lambda \end{aligned}$$
(4.1)

exists in \(L_s^{(n-1)}(X_0^{n-1},Y)\) if and only if \(\Lambda \in L_s^{(n-1)}(X_0^{n-1},Y)\) and, for all \(x_1,\ldots ,x_{n-1}\in X_0\), the limit

$$\begin{aligned} \lim _{t\rightarrow 0}\frac{\partial ^{n-1}_{x_1\ldots x_{n-1}}f(u+tx_n)-\partial ^{n-1}_{x_1\ldots x_{n-1}}f(u)}{t}=\Lambda (x_1,\ldots ,x_{n-1}) \end{aligned}$$
(4.2)

holds in Y. By assumption, the limit (4.2) is equal to \( \partial ^n_{x_1\ldots x_{n-1}x_n}f(u)\), for all \(x_1,\ldots ,x_{n-1}\). Since, by assumption, \( \partial ^n_{x_1\ldots x_{n-1}x_n}f(u)\) is separately continuous in \(u,x_1,\ldots ,x_{n-1},x_n\), we have that the limit (4.1) exists in \(L_s^{(n-1)}(X_0^{n-1},Y)\) and is given by

$$ \partial _{x_n} \partial ^{n-1} _{X_0}f(u).(x_1,\ldots ,x_{n-1})=\Lambda (x_1,\ldots ,x_{n-1}) =\partial ^n_{x_1\ldots x_{n-1}x_n}f(u)\qquad \forall x_1,\ldots ,x_{n-1}\in X_0. $$

Since u and \(x_n\) were arbitrary, we have proved that \( \partial _{x_n} \partial ^{n-1}_{X_0}f(u)\) exists for all u, \(x_n\). Moreover, for all \(x_1,\ldots ,x_n\in X_0\), the function

$$ U\rightarrow Y,\ u\mapsto \partial _{x_n} \partial ^{n-1}_{X_0}f(u).(x_1,\ldots ,x_{n-1}) =\partial _{x_n}\partial ^{n}_{x_1\ldots x_{n-1}}f(u) $$

is continuous, by separate continuity of (2.1). Then \(\partial ^{n}_{x_1\ldots x_{n-1}x_n}f(u)\) is linear in \(x_n\). The continuity of

$$\begin{aligned} X_0\rightarrow L_s^{(n-1)}(X_0^{n-1},Y),\ x\mapsto \partial _x \partial _{X_0 }^{n-1}f(u) \end{aligned}$$
(4.3)

comes from the continuity of \(\partial ^{n}_{x_1\ldots x_{n-1}x}f(u)\) in each variable, separately. Hence (4.3) belongs to \(L_s(X_0,L_s^{n-1}(X_0^{n-1},Y))\) for all \(u\in U\). This shows that \( \partial _{X_0 }^{n-1}f\) is Gâteaux differentiable with respect to \(X_0\) and that

$$\begin{aligned} \partial _{X_0}^nf(u).(x_1,\ldots ,x_n) = \partial ^n_{x_1\ldots x_n}f(u) \qquad \forall u\in U, \ \forall x_1,\ldots ,x_n\in X_0, \end{aligned}$$

and shows also the continuity of

$$ U\rightarrow L^{(n)}_s(X_0^n,Y),\ u \mapsto \partial _{X_0}^nf(u), $$

due to the continuity of the derivatives of f, separately in each direction. Then we have proved that \(f\in \mathscr {G}^{n}(U,Y;X_0)\) and that (2.2) holds.

Now suppose that \(f\in \mathscr {G}^{n}(U,Y;X_0)\). By the very definition of \( \partial _{X_0 }f\), \(\partial _xf(u)\) exists for all \(x\in X_0\) and \(u\in U\), it is separately continuous in ux, and coincides with \( \partial _{X_0 }f(u).x\). By induction, assume that \(\partial ^{n-1}_{x_1\ldots x_{n-1}}f(u)\) exists and that

$$\begin{aligned} \partial ^{n-1}_{X_0}f(u).(x_1,\ldots ,x_{n-1})=\partial ^{n-1}_{x_1\ldots x_{n-1}}f(u)\qquad \forall u\in U,\ \forall x_1,\ldots ,x_{n-1}\in X_0. \end{aligned}$$
(4.4)

Since \( \partial _{X_0 }^{n-1}f(u)\) is Gâteaux differentiable, the directional derivative \(\partial _{x_n} \partial ^{n-1}_{X_0 }f(u)\) exists. Hence, by (4.4), the derivative \(\partial ^n_{x_1\ldots x_{n-1}x_n}f(u)\) exists for all \(x_1,\ldots ,x_{n-1},x_n\in X_0\). The continuity of \(\partial ^n_{x_1\ldots x_{n-1}x_n}f(u)\) with respect to u comes from the continuity of \( \partial _{X_0 }^nf\). The continuity of \(\partial ^n_{x_1\ldots x_{j}\ldots x_n}f(u)\) with respect to \(x_j\) comes from the fact that, for all \(x_{j+1},\ldots ,x_n\in X_0\), \(u\in U\),

$$ X_0^j\rightarrow Y,\ (x_1',\ldots ,x_j') \mapsto \partial ^n_{X_0 }f(u).( x_1',\ldots ,x_j',x_{j+1},\ldots ,x_{n}) $$

belongs to \(L^{(j)}_s(X_0^j,Y)\). \(\blacksquare \)

Proof of Theorem 2.9 The proof is by induction on n. The case \(n=1\) is provided by Proposition 2.7.

Let \(n\ge 2\). Clearly, it is sufficient to prove that \(\varphi \in \mathscr {G}^{n}(U,Y_n)\) and that (2.11) holds true for \(j=n\). Since we are assuming that the theorem holds true for \(n-1\), we can apply it with the data

$$ \widetilde{h}_1:U\times \widetilde{Y}_2\rightarrow \widetilde{Y}_2,\ \ldots , \widetilde{h}_{n-1}:U\times \widetilde{Y}_n\rightarrow \widetilde{Y}_n, $$

where \(\widetilde{h}_k:=h_{k+1}\), \(\widetilde{Y}_k:=Y_{k+1}\), for \(k=1,\ldots ,n-1\). According to the claim, the fixed-point function \(\widetilde{\varphi }\) of \(\widetilde{h}_1\) belongs to \(\mathscr {G}^{j}(U,\widetilde{Y}_{(n-1)-j+1})\), for \(j=1,\ldots ,n-1\), and formula (2.11) holds true for \(\widetilde{\varphi }\) and \(j=1,\ldots ,n-1\). Since \(\varphi (u)=(i_{2,1}\circ \widetilde{\varphi }) (u)\), for \(u\in U\), we have \(\varphi \in \mathscr {G}^{j}(U,\widetilde{Y}_{n-j})=\mathscr {G}^{j}(U,Y_{n-j+1})\), for \(j=1,\ldots ,n-1\), and

$$ \partial ^j_{x_1\ldots x_j}\varphi (u)=\partial ^j_{x_1\ldots x_j}\widetilde{\varphi }(u)\in \widetilde{Y}_{n-j}=Y_{n-j+1}, \qquad \forall u\in U, \ \forall x_1,\ldots ,x_j\in X. $$

Then (2.11) holds true for \(\varphi \) up to order \(j=n-1\). In particular \(\varphi \in \mathscr {G}^{n-1}(U,Y_2)\), hence, for \(x_1,\ldots ,x_n\in X\), \(\epsilon >0\), we can write

$$\begin{aligned} \begin{aligned}&\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u+\varepsilon x_n) - \partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u) \\&= \left( \partial _{Y_1}h_1(u+\varepsilon x_n,\varphi (u+\varepsilon x_n)).\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u+\varepsilon x_n)- \partial _{Y_1}h_1 (u,\varphi (u)).\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)\right) \\&{=:} + \left( \mathscr {S}(u+\varepsilon x_n)- \mathscr {S}(u)\right) \\&=:\mathbf {I}+\mathbf {II}, \end{aligned} \end{aligned}$$
(4.5)

where \(\mathscr {S}(\cdot )\) denotes the sum

$$ \mathscr {S}(v):=\partial ^{n-1}_{x_1\ldots x_{n-1}}h_1(v,\varphi (v)) + \sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_{n-1}\}} \\ \mathbf {x}\ne \emptyset \end{array}}\sum _{i=\max \{1,2-(n-1)+|\mathbf {x}|\}}^{|\mathbf {x}|}\sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {x})\\ \mathbf {p}=(\mathbf {p}_{1},\ldots ,\mathbf {p}_i) \end{array}} \partial ^{n-1} [\mathbf {x}^c,\mathbf {p}]h_1(v,\varphi (v)), $$

for \(v\in U\). By recalling that \(\varphi \in \mathscr {G}^{j}(U,Y_{n-j+1})\), \(j=1,\ldots ,n-1\), hence by taking into account with respect to which space the derivatives of \(\varphi \) are continuous, we write

$$\begin{aligned} \mathbf {I}=&\partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u+\varepsilon x_n)}h_1(u+\varepsilon x_n,\varphi (u+\varepsilon x_n))- \partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)}h_1(u,\varphi (u)) \nonumber \\ =&\int _0^1 \partial _{x_n}\partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u+\varepsilon x_n)}h_1(u+\theta \varepsilon x_n,\varphi (u+\varepsilon x_n))\varepsilon {d} \theta \nonumber \\&+\int _0^1 \partial _{\frac{\varphi (u+\varepsilon x_n)-\varphi (u)}{\varepsilon }}\partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u+\varepsilon x_n)}h_1(u,\varphi (u)+\theta (\varphi (u+\varepsilon x_n)-\varphi (u)))\varepsilon {d} \theta \nonumber \\&+ \partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u+\varepsilon x_n)- {\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)} }h_1(u,\varphi (u)) \nonumber \\ =&\mathbf {I_1}+\mathbf {I_2}+ \partial _{Y_1}h_1(u,\varphi (u)).\left( \partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u+\varepsilon x_n)- {\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)}\right) ,\nonumber \\ \end{aligned}$$
(4.6)

with (Footnote 5)

$$ \lim _{\varepsilon \rightarrow 0}\frac{\mathbf {I_1}}{\varepsilon }=\partial _{x_n}\partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)}h_1(u,\varphi (u)) \qquad \text { and } \qquad \lim _{\varepsilon \rightarrow 0}\frac{\mathbf {I_2}}{\varepsilon }=\partial _{\partial _{x_n}\varphi (u)}\partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)}h_1(u,\varphi (u)) . $$

In a similar way,

$$\begin{aligned} \begin{aligned} \lim _{\varepsilon \rightarrow 0}&\frac{\mathbf {II}}{\varepsilon }= \partial _{x_n}\partial ^{n-1}_{x_1\ldots x_{n-1}}h_1(u,\varphi (u)) +\partial _{\partial _{x_n}\varphi (u)}\partial ^{n-1}_{x_1 \ldots x_{n-1}}h_1(u,\varphi (u))\\&+\sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_{n-1}\}}\\ \mathbf {x}\ne \emptyset \end{array}} \sum _{i=\max \{1,2-(n-1)+|\mathbf {x}|\}}^{|\mathbf {x}|} \sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {x})\\ \mathbf {p}=(\mathbf {p}_1,\ldots , \mathbf {p}_i) \end{array}} \partial _{x_n} \partial ^{n-1} [\mathbf {x}^c,\mathbf {p}]h_1(u,\varphi (u))\\&+ \sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_{n-1}\}}\\ \mathbf {x}\ne \emptyset \end{array}} \sum _{i=\max \{1,2-(n-1)+|\mathbf {x}|\}}^{|\mathbf {x}|} \sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {p})\\ \mathbf {p}=(\mathbf {p}_1,\ldots , \mathbf {p}_i) \end{array}} \Bigg( \partial _{\partial _{x_n}\varphi (u)} \partial ^{n-1} [\mathbf {x}^c,\mathbf {p}]h_1(u,\varphi (u)) \\&+ \sum _{j=1}^i\partial _{\mathbf {x} ^c}^{|\mathbf {x}^c|}\partial _{\partial ^{| \mathbf {p}_1|}_{\mathbf {p}_1}\varphi (u)} \ldots \partial _{\partial ^{|\mathbf {p}_{j-1} |}_{\mathbf {p}_{j-1}}\varphi (u)} \partial _{\partial _{x_n}\partial ^{| \mathbf {p}_j |}_{ \mathbf {p}_j }\varphi (u)} \partial _{\partial ^{|\mathbf {p}_{j+1}|}_{\mathbf {p} _{j+1}}\varphi (u)} \ldots \partial _{\partial ^{|\mathbf {p}_i|}_{\mathbf {p}_i }\varphi (u)} h_1(u,\varphi (u)) \Bigg) . \end{aligned} \end{aligned}$$
(4.7)

Notice that

$$\begin{aligned} \begin{aligned}&\sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_{n-1}\}} \mathbf {x}\ne \emptyset \end{array}} \sum _{i=\max \{1,2-(n-1)+|\mathbf {x}|\}}^{|\mathbf {x}|} \sum _{\begin{array}{c} p_\pi \in P^i(\mathbf {x})\\ \mathbf {p}= ( \mathbf {p}_1,\ldots ,\mathbf {p}_i ) \end{array}} \partial _{x_n} \partial ^{n-1} [\mathbf {x}^c,\mathbf {p}]h_1(u,\varphi (u))\\&= \sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_n\}}\\ \mathbf {x}\ne \emptyset \\ x_n\not \in \mathbf {x} \end{array}} \sum _{i=\max \{1,2-n+|\mathbf {x}|\}}^{|\mathbf {x}|} \sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {x})\\ \mathbf {p}=(\mathbf {p}_1,\ldots , \mathbf {p}_i) \end{array}} \partial ^n [\mathbf {x}^c,\mathbf {p}]h_1(u,\varphi (u)) -\partial _{x_n} \partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)}h_1(u,\varphi (u)) \end{aligned} \end{aligned}$$
(4.8)

and

$$\begin{aligned} \begin{aligned} \sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_{n-1}\}}\\ \mathbf {x}\ne \emptyset \end{array}}&\sum _{i=\max \{1,2-(n-1)+|\mathbf {x}|\}}^{|\mathbf {x}|} \sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {x})\\ \mathbf {p}=(\mathbf {p}_1,\ldots , \mathbf {p}_i) \end{array}} \partial _{\partial _{x_n}\varphi (u)}\partial ^{n-1} [\mathbf {x}^c,\mathbf {p}]h_1(u,\varphi (u))\\&= \sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_n\}} \\ x_n\in \mathbf {x}\\ \mathbf {x}\ne \{x_n\} \end{array}} \sum _{i=\max \{1,2-n+|\mathbf {x}|\}}^{|\mathbf {x}|} \sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {x})\\ \mathbf {p}=(\mathbf {p}_1,\ldots , \mathbf {p}_i)\\ \{x_n\}\in \mathbf {p} \end{array}} \partial ^n [\mathbf {x}^c,\mathbf {p}]h_1(u,\varphi (u))\\&{=} -\partial _{\partial _{x_n}\varphi (u)}\partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)}h_1(u,\varphi (u)) \end{aligned} \end{aligned}$$
(4.9)

and

$$\begin{aligned} \begin{aligned} \sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_{n-1}\}}\\ \mathbf {x} \ne \emptyset \end{array}}&\sum _{i=\max \{1,2-(n-1)+|\mathbf {x}|\}}^{|\mathbf {x}|} \sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {x})\\ \mathbf {p}=(\mathbf {p}_1,\ldots , \mathbf {p}_i ) \end{array}} \sum _{j=1}^i L(\mathbf {p},j;u) \\&= \sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_n\}}\\ x_n\in \mathbf {x}\\ \mathbf {x}\ne \{x_n\} \end{array}} \sum _{i=\max \{1,2-n+|\mathbf {x}|\}}^{|\mathbf {x}|} \sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {x})\\ \mathbf {p}=(\mathbf {p}_1,\ldots , \mathbf {p}_i)\\ \{x_n\}\not \in \mathbf {p} \end{array}} \partial ^n [\mathbf {x}^c,\mathbf {p} ]h_1(u,\varphi (u)) \end{aligned} \end{aligned}$$
(4.10)

where

$$ L(\mathbf {p},j;u) :=\partial _{\mathbf {x} ^c}^{|\mathbf {x}^c|} \partial ^{|\mathbf {x}|} _{ \partial ^{|\mathbf {p}_1|}_{\mathbf {p} _1}\varphi (u) \ldots \partial ^{|\mathbf {p}_{j-1}|}_{ \mathbf {p}_{j-1} \varphi (u)} \partial _{x_n}\partial ^{|\mathbf {p}_j |}_{\mathbf {p}_j}\varphi (u) \partial ^{|\mathbf {p}_{j+1} |}_{\mathbf {p}_{j+1}}\varphi (u) \ldots \partial ^{|\mathbf {p}_i|}_{\mathbf {p}_i }\varphi (u)} h_1(u,\varphi (u)). $$

By collecting (4.7), (4.8), (4.9), (4.10), we obtain

$$\begin{aligned} \begin{aligned} \lim _{\varepsilon \rightarrow 0}\frac{\mathbf {II}}{\varepsilon }=&\, \partial _{\partial _{x_n}\varphi (u)}\partial ^{n-1}_{x_1\ldots x_{n-1}}h_1(u,\varphi (u)) +\partial ^n_{x_1\ldots x_{n}}h_1(u,\varphi (u)) -\partial _{\partial _{x_n}\varphi (u)}\partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)}h_1(u,\varphi (u)) \\&+ \sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1\ldots x_n\}} \\ \mathbf {x}\ne \emptyset \\ \mathbf {x}\ne \{x_n\} \end{array}}\sum _{i=\max \{1,2-n+|\mathbf {x}|\}}^{|\mathbf {x}|}\sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {x})\\ \mathbf {p}=(\mathbf {p}_1,\ldots , \mathbf {p}_i) \end{array}} \partial ^n [\mathbf {x}^c,\mathbf {p}]h_1(u,\varphi (u)) -\partial _{x_n}\partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)}h_1(u,\varphi (u))\\ =&\partial ^n_{x_1\ldots x_{n}}h_1(u,\varphi (u)) -\partial _{\partial _{x_n}\varphi (u)}\partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)}h_1(u,\varphi (u)) \\&+\sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_n\}} \\ \mathbf {x}\ne \emptyset \end{array}}\sum _{i=\max \{1,2-n+|\mathbf {x}|\}}^{|\mathbf {x}|}\sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {x})\\ \mathbf {p}=(\mathbf {p}_1,\ldots , \mathbf {p}_i) \end{array}} \partial ^n [\mathbf {x}^c,\mathbf {p}]h_1(u,\varphi (u)) -\partial _{x_n}\partial _{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)}h_1(u,\varphi (u)). \end{aligned} \end{aligned}$$

Hence

$$ \lim _{\varepsilon \rightarrow 0}\left( \frac{\mathbf {I_1}}{\varepsilon }+ \frac{\mathbf {I_2}}{\varepsilon }+ \frac{\mathbf {II}}{\varepsilon }\right) = \sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_n\}} \\ \mathbf {x}\ne \emptyset \end{array}}\sum _{i=\max \{1,2-n+|\mathbf {x}|\}}^{|\mathbf {x}|}\sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {x})\\ \mathbf {p}=(\mathbf {p}_1,\ldots ,\mathbf {p}_i) \end{array}} \partial ^n [\mathbf {x}^c,\mathbf {p}] h_1(u,\varphi (u)) +\partial ^n_{x_1\ldots x_{n}}h_1(u,\varphi (u)), $$

and, by recalling (4.5), (4.6), we obtain

$$\begin{aligned}&\lim _{\varepsilon \rightarrow 0} \left( I- \partial _{Y_1}h_1(u,\varphi (u))\right) .\frac{\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u+\varepsilon x_n)- {\partial ^{n-1}_{x_1\ldots x_{n-1}}\varphi (u)} }{\varepsilon } \\&\qquad \qquad =\sum _{\begin{array}{c} \mathbf {x}\in 2^{\{x_1,\ldots ,x_n\}} \\ \mathbf {x}\ne \emptyset \end{array}}\sum _{i=\max \{1,2-n+|\mathbf {x}|\}}^{| \mathbf {x}|}\sum _{\begin{array}{c} \mathbf {p}\in P^i(\mathbf {x})\\ \mathbf {p}=(\mathbf {p}_1,\ldots , \mathbf {p}_i) \end{array}} \partial ^n [\mathbf {x}^c,\mathbf {p}]h_1(u,\varphi (u)) +\partial ^n_{x_1\ldots x_{n}}h_1(u,\varphi (u)). \end{aligned}$$

Finally, we can conclude the proof by recalling that \(I- \partial _{Y_1}h_1(u,\varphi (u))\) is invertible with strongly continuous inverse. \(\blacksquare \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosestolato, M. (2019). Path-Dependent SDEs in Hilbert Spaces. In: Cohen, S., Gyöngy, I., dos Reis, G., Siska, D., Szpruch, Ł. (eds) Frontiers in Stochastic Analysis–BSDEs, SPDEs and their Applications. BSDE-SPDE 2017. Springer Proceedings in Mathematics & Statistics, vol 289. Springer, Cham. https://doi.org/10.1007/978-3-030-22285-7_9

Download citation

Publish with us

Policies and ethics